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Abstract—Device to device (D2D) communication is considered as an effective technology for enhancing the spectral efficiency and network
throughput of existing cellular networks. However, enabling it in an underlay fashion poses a significant challenge pertaining to interference
management. In this paper, mode selection and resource allocation for an underlay D2D network is studied while simultaneously providing
interference management. The problem is formulated as a combinatorial optimization problem whose objective is to maximize the utility of all
D2D pairs. To solve this problem, a learning framework is proposed based on a problem-specific Markov chain. From the local balance
equation of the designed Markov chain, the transition probabilities are derived for distributed implementation. Then, a novel two phase
algorithm is developed to perform mode selection and resource allocation in the respective phases. This algorithm is then shown to converge to
a near optimal solution. Moreover, to reduce the computation in the learning framework, two resource allocation algorithms based on matching
theory are proposed to output a specific and deterministic solution. The first algorithm employs the one-to-one matching game approach
whereas in the second algorithm, the one-to many matching game with externalities and dynamic quota is employed. Simulation results show
that the proposed framework converges to a near optimal solution under all scenarios with probability one. Moreover, our results show that the
proposed matching game with externalities achieves a performance gain of up to 35% in terms of the average utility compared to a classical
matching scheme with no externalities.

Index Terms—Resource allocation, D2D communication, Markov approximation, matching games with externalities, heterogeneous cellular
networks. F

1 INTRODUCTION

T O efficiently cope with the rapid increase in wireless traffic,
device-to-device (D2D) communications over wireless cellular

networks has emerged as a promising technique to boost the ca-
pacity and coverage of tomorrow’s 5G systems [1]–[3]. Using D2D
communication, a D2D transmitter can directly transmit to the D2D
receiver without routing its traffic through the cellular base station
(BS). The use of D2D communications over cellular networks can
significantly improve the network performance in terms of data offload
[3], [4], content sharing/dissemination [5], [6], energy efficiency [7],
[8], coverage extension [3], and improved spectrum efficiency [9]–
[11]. However, reaping the benefits of D2D communications requires
meeting significant challenges in terms of resource allocation and
interference management [12]–[14].

One of the most critical challenges in D2D is to manage the
interference stemming from the reuse of spectrum resources [1]. D2D
links can use either the unlicensed spectrum (i.e, out-band) [10] or
the licensed spectrum (i.e., in-band) [12] for transmission. In both
cases due to spectrum reuse, the D2D transmission links can cause
interference to other users in the network. We focus on the use of
in-band spectrum (i.e., cellular resources) for D2D communication,
as in-band D2D communication can provide better quality of service
guarantees compared to the out-band spectrum [11]. Furthermore, in
an in-band D2D communication, cellular resources can be allocated to
D2D links in either an orthogonal manner, i.e., the D2D connections
use reserved resources (the dedicated mode or overlay), or in a non-
orthogonal manner, i.e., the D2D connections use same resources
as the cellular connections (the shared mode or underlay). In this
work, we adopt the underlay (shared) mode since it provides a much
better spectral efficiency than the dedicated mode, particularly in dense
networks.

Then, our challenge is to manage the interference stemming
from the reuse of cellular resources between D2D links and regular
cellular links. In such a D2D enabled network, both cross tier (i.e.,
between a D2D pair and cellular user) and co-tier (i.e., between two
D2D pairs when in close proximity) interference can occur, which
significantly degrades the network performance. Moreover, unlike

classical approaches for resource allocation, in a D2D enabled system,
the number of choices for allocating resources increases exponentially
with the number of D2D pairs. Thus, centralized solutions [12], [13]
can no longer cope with the massive overhead in terms of required
computation and signaling. Therefore, an efficient resource allocation
scheme is required that guarantees interference protection to cellular
links and operates in a distributed fashion.

1.1 Related Works
Resource allocation in D2D networks has attracted significant recent
attention and a comprehensive survey can be found in [11]. In
particular, there has been a number of recent works [12]–[20], that
focused on underlay D2D networks. For instance, in [12], the authors
optimize the throughput over the shared D2D resources while meeting
prioritized cellular service constraints. However, this work is based
on a centralized approach that requires significant overhead and is not
tailored to the dense nature of D2D networks. In [13], a practical and
efficient interference-aware resource allocation scheme is presented
for D2D enabled networks. In [12] and [13] resource allocation in
D2D communication is completely base-station (BS) controlled. This
centralized control can lead to significant overhead for a dense D2D
network [3]. Indeed, device-centric architectures are more suitable for
dense D2D networks in which a user device is at least able to control
his action based on its local information, thus distributing the control
in the network [3].

A distributed scheme for resource allocation is studied in [14]
to enable ad-hoc D2D networks during uplink transmission of the
cellular system. Despite the resulting improvement in the system
throughput, this approach requires significant message passing to
operate in a distributed manner. In [15], joint power control and
reuse partner selection is investigated and shown to have improved
performance for D2D systems. Similarly, in [16], a tractable iterative
solution is proposed for improving the energy and resource usage in
a D2D network, using fractional programming. Moreover in [17], a
comprehensive survey on the application of different game-theoretic
models for D2D resource allocation problem is demonstrated. In [18],
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a coalition game approach is proposed to solve the joint power and
channel allocation problem in which D2D and cellular links act as
the players. Similarly, in [19], a novel power and channel allocation
scheme for a D2D enabled system is studied using matching theory
to improve cellular network throughput. However, the works in [15],
[16], [18], and [19] do not account for the presence of multiple D2D
pairs on the same resource block, which can improve the overall
system resource utilization, particularly in dense networks. Moreover,
in existing works, such as in [14]–[16], [18], and [19], uplink resources
for the D2D communication are considered due to ease of interference
management. However, these existing works do not directly extend to
the downlink due to the different system dynamics and interference
characteristics. Furthermore, downlink is the dominating wireless traf-
fic in 5G and beyond systems [21], thus, novel approaches are needed
for the downlink resource reuse in an underlay D2D communication.
Moreover, in most of the aforementioned works (except [12], [15], and
[18]), a fixed resource sharing approach for D2D communication is
considered, which cannot cope with the dynamic channel conditions
and buffer status of D2D users.

The use of resource sharing can be an effective solution for
interference mitigation in D2D communications. In D2D systems,
resource sharing includes mode selection along with resource alloca-
tion. Using mode selection, the network can decide whether dedicated
resources or shared resources are used for D2D communication.
In existing works such as [12], [15] and [18] that consider joint
mode selection and resource allocation, it has been observed that
the shared mode can provide significant improvement in terms of
network throughput compared to the dedicated mode, especially for
dense networks. Moreover, a mixed mode approach in which D2D
links can operate in multiple modes through resource multiplexing has
also been studied in [20]. Typically, for mode selection, a binary mode
selection variable can be used, where the decisions for the mode are
taken at the BS subject to the D2D users’ channel conditions and buffer
status information. However, under dense deployment scenarios, this
centralized control will incur excessive complexity and overhead on
the BS. Moreover, a centralized solution for the joint mode selection
and resource allocation in D2D enabled cellular systems is still an
open issue. Therefore, distributed approaches for such joint problems
will be needed. In order to address these shortcomings, one approach
is to incorporate learning theory, which will be critical for future
deployment of dense networks.

In general, the use of a Markov approximation framework is
suitable for solving a number of combinatorial optimization problems
with feasible learning features [22]. However, the solutions produced
by this framework require complete network information, which may
not be scalable with the network size [22], [23]. To address this
limitation, the work in [24] and [25] presented a near optimal solution
for a joint problem (i.e., user association and resource allocation)
in heterogeneous cellular networks. Moreover in [26]–[28], other
learning approaches are applied to address the resource allocation
problem in D2D networks. These works achieved improved system
performance by adding the learning aspect to D2D networks. However,
these works have ignored the mode selection aspect for D2Ds, which
can further improve network throughput performance.

1.2 Contributions And Organizations
The main contribution of this paper is to introduce a distributed
scalable solution for a dense D2D network by jointly addressing
the problems of mode selection, resource allocation, and interference
management aspects. We propose a novel learning framework based
on Markov approximation to address these issues. Unsupervised learn-
ing is used for mode selection and a two-sided matching game is
incorporated to address the resource allocation aspects. The proposed
matching game is shown to reduce the computation and configuration
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Figure 1: A downlink D2D communication system. The solid line
shows the information links while the dashed line shows the interfer-
ence links.

size in the framework while enabling a self-organizing and distributed
control. Furthermore, we consider a practical scenario in which multi-
ple D2D pairs are allowed to reuse the same resources simultaneously
as long as the cellular transmission protection can be guaranteed. In
summary, our key contributions include the following:
• First, we formulate the joint problem of mode selection, and

resource allocation with an objective to maximize the utility of
all D2D pairs subject to interference protection for cellular trans-
mission. The formulated problem is a mixed-integer non-linear
optimization problem that is NP-hard and requires exponential
computation efforts to obtain the optimal solution.

• Second, to solve the joint problem, we propose a learning frame-
work based on Markov approximation. Furthermore, we design
an ergodic Markov chain and the transition probabilities, which
makes the Markov chain converge to its stationary probabilities.
Using these transition probabilities, we propose a novel two phase
algorithm to perform mode selection and resource allocation
in the respective phases. This distributed algorithm eventually
converges to the near optimal solution in probability with a
bounded performance gap between the optimal and converged
solutions.

• Third, in order to reduce the computation and configuration
size in Markov approximation, we propose two algorithms for
resource allocation based on matching theory. Furthermore, we
prove the stability, convergence, and optimality of the matching
based resource allocation algorithms.

• Simulation results show the convergence, optimality gap, and
utility gains achieved using the proposed framework. Results
show that the framework converges to a near optimal solution.
Moreover, our results show that the proposed matching game with
externalities achieves a performance gain of up to 35% in terms
of the average utility compared to a classical matching scheme
with no externalities.

The rest of this paper is organized as follows. Section 2 presents the
system model and problem formulation. Section 3 describes in detail
how we map the proposed optimization problem into the learning
framework and derive a distributed algorithm. Resource allocation via
matching theory is discussed in Section 4. In Section 5, we present the
simulation results analysis to validate the performance of our proposed
solution. Finally, conclusions are drawn in Section 6.

2 SYSTEM MODEL AND PROBLEM DEFINITION
Consider the downlink of a cellular network consisting of a single BS
and a set K of K D2D pairs located under its coverage, as shown
in Fig. 1. The choice of downlink reflects the worst case interference
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scenario.1 We use the index k0 to indicate the BS. We let set C be
the set of C cellular users. The BS and D2D pairs use the same
set R of R orthogonal resource blocks (RBs).2 For any given RB
r ∈ R, a predefined interference threshold Irmax must be maintained
for protecting the cellular users. Our system model is focused on a
dense communication environment in which the density of the users
is higher than the number of connections that a given BS can support
(e.g., a football stadium). Typically, in such an environment, conges-
tion occurs due to the high number of connections. Therefore, D2D
communication can be used to improve the area spectral efficiency and
increase the number of connected devices per shared RBs.

2.1 Resource Allocation and Link Model

In our model, the D2D transmissions are synchronized to the cellular
transmissions. We assume that all transmitters (BS and D2D pairs)
transmit using a fixed power [29] within the RB duration. However,
each transmitter can have its individual value for the power budget.
In addition, we assume that the transmit power of each transmitter
is equally divided among its RBs and thus, the interference power is
constant. The D2D pairs at each time slot need to determine which
RB is feasible in order to maximize the utility of the system while
protecting the cellular users. For RB allocation, we introduce the
binary variables xrk:

xrk =

{
1, if D2D pair k is assigned RB r,
0, otherwise.

The received signal to interference noise ratio (SINR) pertaining
to the transmission of the D2D pair k over RB r with transmit power
P rk is:

γrk =
xrkP

r
k g

r
k

P rk0g
r
k0,k

+
∑
i∈Ωr,i6=k x

r
iP

r
i g

r
i,k + σ2

, (1)

where the RB gain over the link of D2D pair k is grk, gri,k represents
the RB gain between D2D pair i and D2D pair k, and grk0,k is the RB
gain from the BS to D2D pair k. P rk0 and P ri ,∀i ∈ Ωr , represent the
transmit powers of the BS and the other D2D pairs, respectively, and
Ωr is the set of D2D pairs which are using RB r. Note that, the set of
D2D pairs Ωr using RB r is updated dynamically. The noise power is
assumed to be σ2. Similarly, the SINR of cellular user c over RB r is
given as:

γrc =
P rk0g

r
k0,c∑

i∈Ωr
xriP

r
i g

r
i,c + σ2

, (2)

where grk0,c and gri,c represent the RB power gains from the BS to
cellular user c and D2D pair i to cellular user c, respectively. Note
that

∑
i∈Ωr

xriP
r
i g

r
i,c is the interference experienced by the cellular

user c from a set of D2D pairs Ωr that use RB r. Then, the data rate
of any user u ∈ K \ {k0} ∪ C on RB r is represented as follows:

Rru = W r log(1 + γru), (3)

where W r is the bandwidth of RB r.

2.2 D2D Decision and Mode Selection model
Next, we present the models for D2D decision and mode selection used
in our system. In the D2D decision model, each D2D pair acts based
on its achieved utility. The action here represents the D2D decision to
use a given mode or not. We assume that each D2D pair selfishly and
rationally acts in a way that maximizes its utility. Moreover, each D2D
pair has knowledge of its own utility functions. Therefore, each D2D
pair only acts to maximize its own utility. A decision variable αk is

1. The developed methodology can also be applied to the uplink case by simply
considering the protection of cellular BS.

2. One resource block can correspond to one sub-carrier of the OFDM-based
LTE network.

used to indicate if D2D pair k will follow a specific mode, as follows:

αk =

{
1, if D2D pair k uses the mode,
0, otherwise.

This D2D decision model assists the BS in the mode selection
process. For mode selection, we consider two modes that can be
selected for RB allocation for the D2D pairs. Motivated by the
resource utilization gain achieved by the reuse mode, we only employ
the reuse mode in our model. However, we propose to classify the
reuse mode for our network into two modes:

• Partial reuse mode: Only one D2D pair can be allocated to an
RB currently in use by a cellular user, only if the interference is
below a pre-defined threshold. By using this mode, there exists
no co-tier interference (i.e., between D2D pairs). This mode is
suitable for scenarios in which the number of D2D pairs is limited
compared to the RBs or the D2D pairs are in close proximity with
each other.

• Full reuse mode: A group of D2D pairs can share an RB only if
the interference produced by this group is below the predefined
threshold for protecting the cellular tier. However, by using this
mode, co-tier interference will also occur. This mode is preferred
in the scenario where there exist a large number of D2D pairs
compared to RBs. Moreover, this mode can further enhance the
RB efficiency, if co-tier interference is well handled.

However, in any given time slot only one mode will be activated for
use in the network [20]. A binary variable y is defined to represent the
two modes, controlled by the BS:

y =

{
1, partial-reuse mode,
0, full-reuse mode.

In contrast to previous works [12], [15], [18] and [20], in our
model, the BS does not choose a mode for individual D2D pairs based
on their channel conditions and buffer status. Here, the BS chooses
a mode depending upon the utility achieved by the network. This
significantly reduces the computational load since the BS will only
need to calculate the utility of the network. However, to obtain the
utility for the network, the D2D pairs and BS need to respectively learn
which D2D users can be successfully admitted under which mode such
that the global network utility is maximized.

2.3 Problem Formulation

Our goal is to maximize a utility function that captures the sum rate
of the D2D pairs by selecting the optimal mode for communication,
admitting the best D2D pairs, and properly reusing the RBs already
occupied by the cellular tier. Therefore, we define the utility function
of the D2D network as follows:

U(y,α, x) =
∑

k∈K

∑
r∈R

[yαkR
r
k + (1− y)αkR

r
k]. (4)

Here, we note that a D2D pair can only use a given RB if the
interference level is less than the predefined interference threshold
Irmax set by the BS on each r. Moreover, the interference experienced
by cellular user c over RB r from a D2D pair k is given by Irk =
αkx

r
kP

r
k g

r
k,c. Note that the binary D2D decision αk and RB allocation

variables xrk ensure that we only account for the interference created
by the D2D pair that use the given mode and is assigned the same RB.
Then our considered joint mode selection and RB allocation (JMARA)
problem can be stated as follows:
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JMARA: maximize
y,α,x

U(y,α, x) (5)

s.t.
∑

r∈R
xrk ≤ 1, ∀k ∈ K, (6)

yαkI
r
k +

|Ωr|∑
k=1

(1− y)αkI
r
k ≤ Irmax, ∀r ∈ R, (7)

xrk ∈ {0, 1} , ∀k ∈ K,∀r ∈ R, (8)
αk ∈ {0, 1} , ∀k ∈ K, (9)
y ∈ {0, 1} . (10)

In JMARA, the first constraint (6) ensures that each D2D trans-
mitter can be allocated to only one RB. The condition in (6) is used to
better manage the interference stemming from D2D communications.
The second constraint (7) ensures the protection of cellular user
by keeping the interference produced by D2D transmitters below a
predefined threshold under either partial-reuse mode (y = 1) or full-
reuse mode (y = 0). Finally, the binary indicator variables for RB
allocation xrk, D2D decision αk, and mode selection y are represented
by constraints (8), (9) and (10), respectively. The problem JMARA is
a non-convex, integer problem, which is difficult to solve in practical
settings with a large set of D2D pairs and RBs [30]. Thus, we adopt
a Markov approximation [22], [23] framework to solve JMARA
because of its ability to solve combinatorial problems, which will be
presented in the next section.

3 JMARA VIA MARKOV APPROXIMATION

Our proposed solution framework is composed of two steps. The first
step is to create a log-sum-exp approximation and the second step is
to derive the Markov chain for our problem.

We let f = {y,α, x} be a network configuration and F be the set
of all F feasible configurations defined by constraints (6) and (7). For
ease of presentation, we let Uf = U(y,α, x). Therefore, JMARA
can be written as

max
f∈F

Uf . (11)

However, Uf in not differentiable. Thus, we transform (11) from a
discrete function of f to an equivalent continuous function of pf (i.e.,
an equivalent maximum weight independent set (MWIS) problem) as:

max
p≥0

∑
f∈F

pfUf

s.t.
∑
f∈F

pf = 1,
(12)

where pf represents the probability of choosing configuration f , i.e.,
the weight of the configuration. pf can be viewed as the fraction of the
time a configuration f is activated. Note that, both problems given in
(11) and (12) have the same optimal value [22]. However, (12) is still
challenging to solve due to the combinatorial nature of the variables.
Next, to solve this combinatorial problem, we use the Log-sum-exp
Approximation.

3.1 Step 1: Log-sum-exp Approximation
The Log-sum-exp function is a convex and closed function [22] mainly
used by machine learning algorithms as a smooth approximation of
the max function. Therefore, we interpreted it as a differentiable
approximation of the max function given in (11) [30, pp. 72]. Hence,
we have:

max
f∈F

Uf ≈ gβ(Uf ) =
1

β
log

∑
f∈F

exp(βUf )

 , (13)

where β is a positive constant. Furthermore, the approximation gap is
upper-bounded by F , where F is the size of the set F , and Umax =
max
f∈F

Uf , and then the approximation accuracy will be [30]:

0 ≤ |Umax − gβ(Uf )| ≤ 1

β
logF. (14)

Clearly, as β → ∞, 1
β logF → 0, which renders the approxi-

mation exact. The following problem is equivalent to solving the log-
sum-approximation in (13) [22], [30]:

max
p≥0

∑
f∈F

pfUf −
1

β

∑
f∈F

pf log pf

s.t.
∑

f∈F
pf = 1,

(15)

where the first term in (15) represents the MWIS objective and the
second term represents the entropy term. We can obtain the optimal
probability distribution p∗ by solving the Karush-Khun-Tucker (KKT)
condition for the above problem [30], given as follows ∀f ∈ F :

p∗f (Uf ) =
exp(βUf )∑

f ′∈F
exp(βUf ′)

=
1∑

f ′∈F
exp(β(Uf ′ − Uf ))

, (16)

where (Uf ′−Uf ) is the difference in utilities. The optimal solution in
(16) presents an implicit solution for (15) that differs from (12) by an
entropy term − 1

β

∑
f∈F pf log pf . Furthermore, the solution to (15)

requires complete information of F , which is typically unknown due
to a large computational space. Thus, to find F , a computationally
exhaustive approach is needed, which is not practical.

3.2 Step 2: Markov Chain (MC)
The solution given in (16) is not practical since complete information
on all feasible configurations F is required, which is not possible as
discussed in Section 3.1. Hence, we view (16) as a Markov chain.
To this end, each configuration f corresponds to a state with (16)
being its stationary distribution. Then, the goal is to derive the Markov
chain for the problem given in (15) and reach to the optimal stationary
distribution given in (16) that represents its solution. From [22], it is
shown that there exists at least one continuous-time time-reversible
ergodic Markov chain with stationary distribution p∗f (Uf ) for any
probability distribution of the product form p∗f (Uf ) presented in (16).

In order to construct a time-reversible Markov chain with sta-
tionary distribution p∗f (Uf ), we let configuration f , f ′ ∈ F be the
states of a time-reversible ergodic Markov chain and let q(f→f ′) and
q(f ′→f) denote the nonnegative transition rates from states f → f ′

and f ′ → f , respectively. Then, the following two conditions are
sufficient for the Markov chain design [22]:
• any two states are accessible from each other.
• the local balanced equation satisfies (17), ∀f, f ′ ∈ F ,

p∗f (Uf ) q(f→f ′) = p∗f ′(Uf ′)q(f ′→f),

exp(βUf )q(f→f ′) = exp(βUf ′)q(f ′→f).
(17)

This balance equation is useful because it eliminates the need for
complete information of all possible configurations F . Any q(f→f ′)
and q(f ′→f) values can be used for the design of the algorithm as long
as (17) is satisfied. Therefore, we limit the number of configurations
to f and f ′, i.e., F = {f, f ′}. We set the conditional probabilities
as the transition rates, i.e., q(f ′→f) = p∗f |{f,f ′}(Uf ) and q(f→f ′) =
p∗f ′|{f,f ′}(U

′
f ). Hence, we obtain

p∗f |{f,f ′}(Uf ) + p∗f ′|{f,f ′}(U
′
f ) = 1,

q(f ′→f) + q(f→f ′) = 1.
(18)

Thus, by solving (17) and (18) we obtain the transition probabili-
ties as a logistic function of utility difference as

q(f→f ′) = (1 + exp[β(Uf − Uf ′)])−1, (19)

q(f ′→f) = (1 + exp[β(Uf ′ − Uf )])−1. (20)

These transition probabilities are used to derive the Markov chain
towards the optimal solution in (16). However, we cannot design a
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Algorithm 1 Learning Algorithm (LA)
1: initialize:

i[1] ← 0, y[1] ← rand ∈ {0, 1},
Υk(1)← 0, ωk ← 1, βk(1)← 1, ∀k.
αk

[1] , [∅]k∈K, xk
[1] , [∅]k∈K.

2: while t 6= T and D 6= ∅ and ω0 > 0 do
Phase 1: Mode Selection:

3: if i[t] 6= 1 then

4: {y, α}[t+1]
k ←

{
rand{y, α}k with prob. ωk,

{y, α}[t]k with prob. 1− ωk.

5: else
6: Calculate ν ← q(fk→fk

′) using (21).

7: {y, α}[t+1]
k ←

{
{y, α}[t−1]

k with prob. ν,
{y, α}[t]k with prob. 1− ν.

8: βk(n+ 1)← βk(n) ∗ βstep.
9: Υk(n− 1)← Υk(n).

10: Υk(n)← {y, α}[t+1]
k .

11: if Υk(n− 1) = Υk(n) then
12: ωk ← max{0, ωk − ωstep}.
13: i[t+1] ← 1− i[t].

Phase 2: Resource Allocation:
14: if y[t+1] = 1 then
15: Run Alg. 2 for α[t+1] to obtain x[t+1].
16: else
17: Run Alg. 3 for α[t+1] to obtain x[t+1].
18: Calculate utility U [t+1]

k,fk
,∀D.

Phase 3: Update:
19: Update y[t+1], α

[t+1]
k , x

[t+1]
k .

20: if ωk = 0 then
21: D ← D \ {k}.

distributed and scalable algorithm using (19) and (20), which use
the global utility, i.e., Uf . Due to the distributed nature of the
network, a player k is only aware of its own individual local utility
Ufk without additional signaling and overhead. Therefore, we define
Uk,fk = Uk(m,αk, xk) as the local utility for each player k. Then,
we substitute the local utilities in (19) and (20) to obtain

q(fk→f ′k) = (1 + exp[βk(Uk,fk − Uk,f ′k)])−1, (21)

q(f ′k→fk) = (1 + exp[βk(Uk,f ′k − Uk,fk)])−1. (22)

Hence, the Markov chain based on using these local utilities
converges to a distribution p̃f (Uf ) instead of p∗f (Uf ) given in (16).
However, the gap between this distribution p̃f (Uf ) and the optimal
p∗f (Uf ) is also bounded [23], [24].

3.3 Learning Algorithm

Next, based on the analysis of the Markov chain in Section 3.2, we
present the learning algorithm shown in Alg. 1 for solving the modeled
Markov chain. The algorithm consists of three phases: (i) the mode
selection phase (lines 3-13), (ii) resource allocation phase (lines 14-
18), and (iii) update phase (line 19-21) as illustrated in Fig. 2. In
Phase 1, we use unsupervised learning using the logistic equations
given by (21) and (22). The learning approach uses properties from
log-linear learning [31] and simulated annealing [32] for selection of
the control variables action (i.e., y and α). For our scenario, the BS
chooses the mode action and all D2D pairs choose their admission
action. In Phase 2, resource allocation (i.e., x) is performed (details
of resource allocation are presented in Sec. 4), for the given mode and
D2D pairs that decide to use this mode. Once the first two phases are
executed, all control variables are updated in Phase 3.

In line 1 of Alg. 1, all the control variables and the auxiliary
variables are initialized. We introduce the auxiliary variables as
Υk = [Υ1, ...,Υ|n|], i[t], βk and ωk. Here, these auxiliary variables
are used to control the mixing characteristics and stopping time for
the underlying Markov chain. The vector Υk is used for convergence
analysis, and i[t] is an experimentation indicator that indicates whether
or not experimentation takes place at time slot t. βk controls the gap
given in (14) and ωk balances between exploration and exploitation
rates. As explained earlier, as βk → ∞, the gap 1

βk
logFk → 0 and
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Figure 2: Block diagram of learning algorithm (LA).

the βk update control the mixing of the Markov chain [33], which
can be either linear or geometric. We implement the geometric update
(line 8), which gradually yields zero gap.

The learning algorithm starts by the BS (i.e., k0) selecting a
random mode y[1] (i.e., partial or full-reuse mode) when there exists
no configuration (line 1). In Phase 1, the set of players D ⊆ K either
performs experimentation or consolidation. In experimentation, for
time slot t + 1, each player executes one of the two actions, i.e., a
new random configuration is chosen (exploration) or it stays with the
current configuration (exploitation) with probability ωk or 1 − ωk,
respectively (line 4). During consolidation, the current utility obtained
at time slot t is compared with the previously achieved utility at time
slot t− 1 by all players. Then, each player probabilistically (i.e. with
probability ν) chooses its action for time slot t + 1. Furthermore, the
actions that achieve the maximum utility have a higher probability
to be chosen (lines 5-7). Furthermore, as the Markov chain moves
towards convergence (line 11), we reduce the exploration rate by a
constant step size (line 12). Note that all players are aware of the their
own utility received, the configuration employed for the last two time
slots, and whether or not they experimented in the last time slot.

After Phase 1 is completed for time slot t + 1, Phase 2 starts.
In this phase (details of this phase are presented in Section 4), based
on the players actions, a resource allocation algorithm is executed to
obtain the resource allocation vector x[t+1] (lines 14-17). Then, the
utility of configuration U [t+1]

k,fk
is evaluated for all players D.

Finally, we update both the the control variables in Phase 3 for
the next time slot. Moreover, as the exploration rate ωk approaches
zero, we remove the player from learning, as it operates in the best
configuration (lines 20-21). These three phases are repeated until an
equilibrium is reached (line 2), i.e., the underlying Markov chain
converges to the stationary distribution. Moreover, in our learning
framework, the matching algorithm outputs a specific and determin-
istic solution for resource allocation. This matching outcome is then
used in the learning framework as a joint configuration with D2D
decision and mode selection. Since, the overall framework is based
on an ergodic Markov chain, after a sufficiently large number of time
slots T , it converges in probability to a near optimal solution [22], [24]
and [25].
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4 RESOURCE ALLOCATION VIA MATCHING

Once Phase 1 of Alg. 1 is executed, we obtain the mode y as well as
the D2D pairs α that use the selected mode at time slot t + 1. The
next goal here is to perform RB allocation for the given mode and
D2D pairs. For a given mode selection variable y, problem JMARA
can be divided into two combinatorial problems, depending upon the
value of y. In this section, we apply matching theory for solving
these problems under two cases: the partial-reuse or the full-reuse
modes. The motivation to apply matching theory for the RB allocation
problem is its ability to tackle combinatorial problems and achieve a
distributed solution [34], [35]. The benefits of matching theory come
from the distributed nature of control in the system. Furthermore,
matching theory allows each player (i.e., D2D pairs and RBs) to define
its individual utilities depending upon its local information.

4.1 Case 1: Partial-Reuse Mode
In the partial reuse mode, i.e., y = 1, only one D2D pair can use
an RB if the interference level is less than the predefined interference
threshold Irmax set by the BS. Then, we can state the following problem,
as derived directly from JMARA:

PR: maximize
xr
k∈x

∑
r∈R

∑
k∈K

Rrk (23)

subject to (6), (8),
Irk ≤ Irmax, ∀r ∈ R. (24)

In PR, the objective is reduced to maximizing the sum-rate of all
D2D pairs by assigning the RBs. The constraint given by (24) ensures
the protection of cellular users by keeping the interference produced
by the D2D transmitter below a predefined threshold. This allows the
re-usability of an RB r to increase RB efficiency if the interference
constraint can be maintained. Problem PR is still a combinatorial
problem, and finding the solution becomes NP-hard, for a large set of
D2D pairs and RBs in a practical amount of time [30]. Note that PR
is desired to be solved in a distributed manner by each D2D pair such
that it maximizes its own rate. Therefore, we use matching theory to
map the problem PR into a matching game and then discuss the details
of the solution in the following subsections.

4.1.1 Matching Game Formulation
We formulate the RB allocation as a two-sided matching game, then
we define the utility and finally present a matching algorithm that can
find a stable matching which is a key concept for a matching game.

We assume each D2D pair forms a set that can use a single RB.
However, to use this RB, the interference produced by D2D pairs to
RBs should be under the tolerable predefined interference level, i.e.,
constraint (24). Similarly, every RB also forms a set to accommodate
a D2D pair among all the pairs. Therefore, our design corresponds
to a one-to-one matching given by the tuple (K,R,�K,�R). Here,
�K , {�k}k∈K and�R , {�r}r∈R represent the set of preference
relations of D2D pairs and RBs, respectively. Formally, we define the
matching as follows:

Definition 1. A matching µ is defined by a function from the set
K ∪ R into the set of elements of K ∪ R such that k = µ(r) if and
only if r = µ(k).

4.1.2 Preference Profiles of Players
Matching is performed by the two sets of players using preference
profiles. For each player, the preference profile is used to rank the
players of the opposite side. In the proposed game, the two sides,
D2D pairs and RBs, will build their preference profiles by utilizing
local information available at each side. The preference profile for
the D2D pairs is based on the following preference function of the
achievable data rate on RB r:

Uk(r) = W r log(1 + γrk). (25)

The intuition for such a preference function comes from the
objective of problem PR, where each D2D pair wants to maximize
its sum rate. Hence, each D2D pair ranks all the RBs r in a non-
increasing order in its preference profile represented by Pk. Note that
an RB r ∈ R that produces a higher utility (consequently the data rate
achieved by using the more preferred RB is higher) according to (25)
will be preferred over an RB r′ ∈ R by a D2D pair k, i.e., r �k r′,
for carrying out its transmission and will thus be placed higher in its
preference profile.

Similarly, each RB r also needs to have a preference profile that
ranks all the D2D pairs k ∈ K according to its preference function.
By using a two-sided matching game for our problem so we can
guarantee cellular tier protection by the RB defined preferences. This
is important for the proposed game to guarantee (24). This is one of
the main motivations for using a two-sided matching game for our
problem. Moreover, the preference list for each RB is formed by the
BS. The information required at the BS includes the power level of the
D2D transmitters pk, the predefined maximum interference threshold
Irmax for each RB, and the RB power gain between the D2D transmitter
and cellular user grk,c. The preference function is given by:

Ur(k) = max (Irmax − Irk , 0). (26)

According to this preference function, an RB gives less utility to
a D2D pair k, which creates more interference. Additionally, all D2D
pairs that violate (24) receive a zero utility and are ranked as the lowest
in the preference profile of r. Furthermore, to calculate the ranking of
each D2D pair, the BS for each r needs to calculate the interference
Irk induced by the D2D pair k if an RB r is in use. As we assume
the power levels of the D2D pair are fixed and known to the BS, the
calculation of Irk only depends on the RB gain grk,c.

Here, we note that RB power gain grk,c can be estimated by
cellular users and sent back to the BS by using the pilot signal or
any standard RB estimation technique [29]. The total interference
for each cellular user can be estimated as follows. All cellular users
estimate the total received power and send this value to the BS. The
BS can then calculate the interference induced by the D2D pair on
RB r. Therefore, calculation of the interference only requires the
standard RB estimation of grk,c. In addition, signaling is only involved
in sending these values from the cellular user to the BS, which only
occurs once during the initialization phase. Once this information is
acquired, Irk is calculated and the BS ranks each D2D pair k for each
RB r in the preference profile of r represented by Pr.

4.1.3 Resource Allocation Algorithm
We present the RB allocation algorithm based on the proposed match-
ing game. The aim of this algorithm is to find a stable allocation that
is a key solution concept in matching theory [36], [37] and can be
defined as follows:

Definition 2. A matching µ is stable if there exists no blocking pair
(k, r), where k ∈ K, r ∈ R, such that r �k µ(k) and k �r µ(r),
where µ(k) and µ(r) represent, the current matched partners of k and
r, respectively.

In our game, a stable solution ensures that no matched D2D pair
would benefit from deviating from their assigned RB r with a new
RB r′. The output of our algorithm is the RB allocation vector x of
D2D pairs that maximizes the objective of the optimization problem
PR, and the pseudo code is given in Alg. 2. The presented algorithm
is guaranteed to converge to a stable allocation as it is a variant of the
well-known deferred acceptance algorithm [36].

Alg. 2 has three phases namely, the initialization phase, the
matching phase and the RB allocation phase. In the initialization
phase, information on the active D2D pairs α and local information
required is attained to build the preference profiles (lines 1-3).
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Algorithm 2 Partial Reuse-mode Resource Allocation Algorithm
1: Phase 1: Initialization:
2: input: α, Pk , Pr , ∀r, k.
3: initialize: t = 0, µ(t) , {µ(k)(t), µ(r)(t)}k∈K,r∈R = ∅, Lr

(t) = ∅ Pk
(0) =

Pk , Pr
(0) = Pr , Irmax, ∀r, k.

4: Phase 2: Matching:
5: repeat
6: t← t+ 1.
7: for k ∈ K, propose r according to Pk

(t) do
8: while k /∈ µ(r)(t) and P(t)

k 6= ∅ do
9: if Irmax ≥ I

r
k then

10: if k �r µ(r)(t) then
11: µ(r)(t) ← µ(r)(t) \ k′.
12: µ(r)(t) ← k.
13: P′(t)r = {k′ ∈ µ(r)(t)|k �r k

′}.
14: else
15: P′′(t)r = {k ∈ K|µ(r)(t) �r k}.
16: else
17: P′′′(t)r = {k ∈ K|Irmax ≤ I

r
k}.

18: Lr
(t) = {P′(t)r } ∪ {P

′′(t)
r } ∪ {I

′(t)
r }.

19: for l ∈ Lr
(t) do

20: Pl
(t) ← Pl

(t) \ {r}.
21: Pr

(t) ← Pr
(t) \ {l}.

22: until µ(t) = µ(t−1).
23: Phase 3: Resource Allocation:
24: output: µ(t).

In the second phase matching, each unassigned D2D pair k
proposes to its most preferred RB r according to Pk (lines 7-8).
The BS determines the interference Irk produced and evaluates (24).
If (24) is violated, the D2D pair k is rejected. Otherwise, the BS
checks the preference ranking of the resource r. If ranked higher
than the current match (µ(r)t), the D2D pair k will be accepted.
Otherwise, it will be rejected. Finally, all the rejected D2D pairs at
iteration t, i.e., the set Lr(t), are removed by both sides in order
to update their preference profiles. The matching process is carried
out iteratively until a stable match is found between both sides. The
process will terminate when all the D2D pairs that can maintain the
interference tolerance level are assigned to RBs or there are no more
RBs to propose. The algorithm will converge when the matching of
two consecutive iterations t remains unchanged (lines 4-22) [36]. The
final stage is the RB allocation phase in which the matched D2D pairs
are allowed to transmit on the matched RBs (lines 23-24).

Theorem 1. The stable solution resulting from Alg. 2 is also a local
maximum of the PR problem.

Proof. Please see Appendix A.

4.2 Case 2: Full-Reuse mode

In the full-reuse mode, i.e., y = 0, the BS allows a set of D2D pairs to
reuse the RB with a cellular user in such a manner that this allocation
does not violate the interference constraint, i.e., Irmax set by the BS.
Then, we can state the following problem:

FR: maximize
xr
k∈x

∑
r∈R

∑
k∈K

Rrk (27)

subject to (6), (8),∑|Ωr|

k=1
xrkP

r
k g

r
k,c ≤ Irmax . (28)

Similar to problem PR, the objective in FR is to maximize the
sum rate of all D2D pairs. However, in FR, the constraint given by
(28) reflects reuse of the same RB by a set of D2D pairs Ωr only if
the interference is not violated (i.e., Irmax) over RB r. The formulated
problem FR is also a combinatorial problem and solving FR using
classical optimization techniques is an NP-hard problem. Here, by
relaxing some of the constraints, the complexity of FR will remain
intractable for a sufficiently large set of RBs and D2D pairs. This
motivates the use of matching theory.

4.2.1 Matching Game Formulation
Similar to the partial-reuse mode, in the full-reuse mode there are also
two disjoint sets of agents, the set of RBs,R, and the set of D2D pairs,
K. Each RB r has a strict, transitive, and complete preference profile
Pr defined over D2D pairs, i.e., 2K. Note that under the full-reuse
mode, D2D pairs can operate on the same RB, which can cause severe
interference to cellular users as well as other D2D pairs operating on
the same RBs. This can be observed from (1), the SINR of a D2D
pair k. From (6), it is given that each D2D pair can use a single RB.
However, different D2D pairs can use the same resource to improve
RB efficiency. Therefore in full-reuse mode, the preference profile
Pk of D2D pairs is defined over the RBs, i.e., R. Note that, other
D2D pairs k′ operating on that RB implicitly affect the preference
ranking of the D2D pair k. Therefore, our design corresponds to
the one-to-many matching given by the tuple (K,R,�K,�R). Here,
�K , {�k}k∈K and�R , {�r}r∈R represent the set of preference
relations of the D2D pairs and RBs, respectively. Formally, we define
the matching as follows:

Definition 3. A matching µ is defined on the setK∪R, which satisfies
for all r ∈ R and k ∈ K:

1) |µ(k)| ≤ 1 and µ(k) ∈ R ∪ φ,
2) |µ(r)| ≤ qr and µ(r) ∈ 2K ∪ φ,
3) If k ∈ µ(r) then µ(k) = r,
4) If µ(k) ∈ r for RB r then µ(r) =M,

where qr denotes the quota of RB r, M ⊂ K denotes the set of
acceptable D2D pairs who prefer r, and |µ(.)| denotes the cardinality
of the matching outcome µ(.). Then, the first two conditions here
represent constraints given by (6) and (28), respectively, where qr
represents the total tolerable interference Irmax of RB r. Note that,
by using qr , which represents the total tolerable interference, we can
make a decision on the number of D2D pairs that can be allocated a
given RB r without violating condition (28). Here, µ(k) = φ means
that k is not matched to any RB. Similarly, if µ(r) = φ, then there are
no D2D pairs matched to RB r.

4.2.2 Preference Profiles of Players
Similar to the partial-reuse mode in the full-reuse mode, the agents
on both sides need to rank each other using the preference profile.
However, the preference profiles of D2D pairs here depend on the RBs
as well as other D2D pairs assigned to that RB. Such interdependence
relations are known in matching theory as externalities [34], and have
important implications in the design of the proposed solution. Due to
these externalities, an agent may continuously change its preference
order in response to the formation of other agents and thus never reach
a final RB allocation unless externalities are well-handled.

In order to build the preference profile of D2D pairs, each D2D
pair calculates the achievable data rate for each RB and then ranks
them in a descending order. The following preference function is used
by each D2D pair:

Uk(r, µ) = W r log(1 + γrk). (29)

Note that, channel gains in LTE-A system are acquired for sub-
bands (i.e., group of RBs) rather than for each RB [38]. Then, each
D2D pair k will have the same preference over that group of RBs,
i.e., the RBs with same gains will result in the same achievable rate,
thus, creating ties among these RBs in D2D’s preference list. We can
simply break all such ties in any arbitrary way and rank them in a
strict order to achieve a stable allocation [39]. Thus, for any D2D pair
k, a preference relation �k is defined over the set of RBs R such
that, for any two RBs i, j ∈ R, i 6= j, and two matchings µ and
µ′ ∈ K ×R, i = µ(k), j = µ′(k),

(i, µ) �k (j, µ′)⇔ Uk(i, µ) > Uk(j, µ′). (30)
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Similarly, each RB r creates its preference profile by using the
following preference function:

Ur(M, µ) = max
i
{|Mi| : IrMi

≤ Irmax}. (31)

According to (31), each RB r chooses a subset of D2D pairs M
such that the interference produced by M is less than the tolerable
interference threshold Irmax. This preference function maximizes the
number of elements in M, i.e., it maximizes the D2D pairs. Note
that this allows the D2D pairs that produce the lowest interference
to be preferred by RB r. The subset with the highest number of
elements is the most preferred among all the feasible subsets and
ranked accordingly. Moreover, for any RB r, a preference relation
�r is defined such that for any two subsets of D2D pairsM,N ∈ K,
whereM 6= N , andM = µ(r),N = µ′(r):

(M, µ) �r (N , µ′)⇔ Ur(M, µ) > Ur(N , µ′). (32)
Once the matching game and preference profile of both agent sides

have been defined, we now aim to find a stable RB allocation scheme
for the proposed game. However, it is evident from (29) and (31) that
our preferences are a function of the existing matching µ, and from (1),
it is clear that the D2D pairs affect each other’s performance through
co-tier interference. Therefore, in the next subsection, we present a
novel approach adopted to handle such externalities.

4.2.3 Preferences and Externalities
Next, we develop a novel approach to handle externalities in the
proposed game and analyze its solution. In the proposed game, if
D2D pair k is assigned to a RB r, it will produce interference with the
cellular user as well as with the neighboring D2D pairs using the same
RB r. Consequently, an agent (D2D pair) may change its preference
order with regards to a given RB r in response to the action of other
agents, i.e., D2D pairs k′ that have been assigned to RB r. This may
lead to a situation in which agents never reach a final allocation.

Therefore, to build D2D pair preferences that can also handle
the externalities, we propose the representation of the initial network
as an interference graph. To deal with the externalities caused by
neighboring D2D pairs, we use an approach similar to [40], [41]. In
a graph, the nodes represent D2D pairs, and the edges indicate the
interference between connected nodes. We assume that each D2D pair
first evaluates its interfering neighboring D2D pairs. This can be done
by assuming two D2D pairs i and k are connected by an edge that
satisfies the following condition, i.e., the required signal ratio to the
interference signal is below a threshold ζk:

Pkg
r
k

Pigri,k
≤ ζk.

Here, ζk is the predefined thresholds of D2D pair k selected to
determine the severity of the interference. This indicates that D2D
pair k cannot share the same RB with D2D pair i if an edge exists.
Once all the interfering D2D pairs are identified for each D2D pair,
the D2D pairs send this set to the BS. We call this set as a conflict set
for a D2D pair k and denote it as follows:

Ck =

{
k′ ∈ K :

Pkg
r
k

Pigri,k
≤ ζk

}
. (33)

The main idea here is to restrict the reuse of RBs between D2D
pairs who are very close to each other, as this will cause instability
and will have an adverse effect on the network.

4.2.4 Resource Allocation Algorithm
In order to find a stable RB allocation scheme, first, we need to
define the blocking pair. However, in our formulated game there
is an additional challenge of dynamic quota, i.e., the BS allows a
number of D2D pairs (with heterogeneous interference) to use each
RB as long as the interference constraint on that RB is not violated.

Algorithm 3 Full Reuse-mode Resource Allocation Algorithm

1: input: α, P(t)
k , P(t)

r , Ck , ∀r, k.
2: initialize: t = 0, µ(1) , {µ(k)(1), µ(r)(1)}k∈K,r∈R = ∅, Irres

(1) = Irmax,
Jr

(1) = ∅, C(1)
r = ∅, ∀r, k.

3: t← t+ 1.
4: Update ∀k, Pk

(t) for given µ(r)(t−1).
5: ∀k ∈ K with r as its most preferred in P(t)

k .
6: while k /∈ µ(r)(t) and P(t)

k 6= ∅ do
7: if Irres

(t) < Irj , then
8: P′(t)r = {k′ ∈ µ(r)(t)|k �r k

′}.
9: jlp ← the least preferred k′ ∈ P′(t)r .

10: while (P′(t)r 6= ∅) ∪ (Irres
(t) < Irj ) do

11: µ(r)(t) ← µ(r)(t) \ jlp, P′(t)r ← P′(t)r \ jlp.
12: Irres

(t) ← Irres
(t) + Irjlp

.

13: if Irres
(t) < Irj then

14: jlp ← k.
15: else
16: if C(t)

r = {k′ ∈ µ(r)(t) ∪ Ck} = ∅ then
17: µ(r)(t) ← µ(r)(t) ∪ k, Irres

(t) ← Irres
(t) − Irk .

18: else
19: D(t)

r = {k′ ∈ C(t)
r |k �r k

′}.
20: for jlp ∈ D(t)

r do
21: µ(r)(t) ← µ(r)(t) \ jlp.
22: Irres

(t) ← Irres
(t) + Irjlp

.

23: if C(t)
r = {k′ ∈ µ(r)(t) ∪ Ck} = ∅ then

24: µ(r)(t) ← µ(r)(t) ∪ k, Irres
(t) ← Irres

(t) − Irk .
25: else
26: jlp ← k.
27: Jr

(t) = {j ∈ Pr
(t)|jlp �r j} ∪ {jlp}.

28: for j ∈ Jr
(t) do

29: Pj
(t) ← Pj

(t) \ r Pr
(t) ← Pr

(t) \ j.
30: output: µ(t).

This heterogeneous interference of D2D pairs and dynamic quota of
resources introduces new challenges in the game similar to [35] and
[42]. Moreover, our formulated game has the additional challenge
of externalities, which is not addressed in [35] or [42]. Therefore,
the blocking pair for the formulated game with dynamic quota and
externalities is defined as follows:

Definition 4. A matching µ is said to be stable if there exists no
blocking pair (k, r) such that:

a) Irres ≥ Irk , k �r ∅, r �k µ(k), and µ(r) /∈ Ck,
b) Irres < Irk , I

r
res +

∑
k′∈µ(r) Ik′

r ≥ Irk , k �r k′, r �k µ(k),
and µ(r) /∈ Ck,

where Irres = Irmax −
∑
k∈µ(r) I

r
k represents the residual of the

interference tolerance (remaining quota) on RB r. The quota of an RB
r ∈ R is filled when Irres < Irk for a requesting k ∈ K. Definition 4
is based on the following intuition. Whenever a D2D pair k prefers
an RB r over its assigned RB µ(k) that does not contain a conflicting
D2D pair (i.e., µ(r) /∈ Ck), if either: i) r has sufficient interference
tolerance Irres and is willing to accept k (i.e., k �r ∅), or ii) its quota
is filled but it is able to accept k by rejecting some accepted D2D pairs
which are ranked lower than k, then k and r can deviate from their
assigned matching to form a blocking pair. A matching is stable only
if there exist no blocking pairs.

In contrast to the partial reuse mode, here, the preference profile of
the D2D pairs are interdependent with one another through the mutual
interference terms, as seen in (1). Therefore, to achieve stability, a
sufficient condition is that the formation of any new D2D-RB pair
does not undermine the stability of existing matched D2D-RB pairs.
By employing such a condition, the preference profile of currently
matched D2Ds on an RB will remain unaltered even after this new pair
formation. Stability in our solution ensures that after RB allocation, no
matched pair (D2D-RB) in the network would benefit from replacing
their assigned RB with a new better RB and vice versa.

Next, we present a novel and stable RB allocation algorithm. The
algorithm starts by using the local information to build the preference
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profiles (lines 1-3) similar to Alg. 2. At each iteration t, each D2D pair
k, first calculates its utility and ranks all the RBs based on the previous
matching µ(r)(t−1) (line 4). Then, each D2D pair k proposes to the
most preferred r, which can result in either of the two following cases.

The first case is when r does not have sufficient quota Irres
(t) to

accept k, and so r then finds the current matched D2D pairs that rank
lower than D2D pair k according to Pr(t) (lines 7-9). Each of the least
preferred D2D pairs k′ is sequentially rejected until either k can be
accepted or there is no additional k′ to reject (lines 10-12). If sufficient
quota to accept k is not created, then k is also rejected and considered
as the least preferred D2D pair represented by jlp (lines 13-14).

The second case is when the quota of r is enough to accommodate
k, in which it then checks the conflict set Ck. If the conflict set is
empty, the D2D pair k is accepted (lines 15-17). Otherwise, it removes
all lower ranked conflicting D2D pairs compared to D2D pair k from
its current matching (lines 18-22). If the conflict set is still non-empty,
the D2D pair k is rejected and is considered as the least preferred jlp
(lines 23-26).

Finally, the least preferred D2D pair jlp and all D2D pairs ranked
lower than jlp are removed from Pr(t), and similarly these D2D pairs
also remove r from their respective Pk(t) (lines 27-29). With this
process, we guarantee that any less preferred D2D pair will not be
accepted by that RB even if it has sufficient quota to do so, which
is crucial for the matching stability of our design. This process is
repeated until the matching converges. The algorithm will converge
when the matching of two consecutive iterations t remains unchanged.

Theorem 2. Alg. 3 converges to a stable allocation.

Proof. Please see Appendix B.
The optimality property of the stable matching approach can be

observed using the definition of weak Pareto optimality [43]. Let
U(µ) denote the utility obtained by matching µ. A matching µ is
weak Pareto optimal if there is no other matching µ′ that can achieve
a better utility, i.e., U(µ′) u

∑
r∈R

∑
k∈KR

r
k(µ′) ≥ U(µ) u∑

r∈R
∑
k∈KR

r
k(µ′). Formally, we state this as follows:

Definition 5. A matching µ is weak Pareto optimal (PO) if there is no
other matching µ′ with U(µ′) ≥ U(µ) [43].

Theorem 3. Alg. 3 produces a weak PO solution for the FR problem.

Proof. Please see Appendix C.

4.3 Computation Complexity and Implementation
In order to quantify the computational complexity of Alg. 2 and
Alg. 3, first, we discuss the complexity of building the preference
profile by both set of players (i.e., D2D pairs and RBs) that are
the input to Alg. 2 and Alg. 3. Then, we discuss the running time
of both algorithms. For each D2D pair k, the complexity of
building the preference profile using any standard sorting algorithm
is O(R log(R)). Similarly the complexity of building the preference
profile at the central BS for all RBs R is O(KR log(KR)), where R
and K represent the total number of RBs and D2D pairs, respectively.
So, the input to Alg. 2 is η =

∑
k∈K |Pk| +

∑
r∈R |Pr| = 2KR,

where |P| denote the size of preference profile P . Moreover, Alg. 2
terminates after a finite number of iterations [36]. Under the worst
case, when the preferences of all D2D pairs for all RBs are the same,
it can be seen that the time complexity is linear in the size of input
preference profiles (i.e., O(η) = O(KR)) [44].

In Alg. 3 to handle the externalities, at each iteration, all D2D
pairs update their preference list (i.e., O(R log(R))) based on the
current matching. This is different from Alg. 2 whose preference list
is updated only once during the initialization phase. Moreover, an
additional input vector of the conflict set Ck will be added as an input
with maximum size of K − 1 (i.e., the worst case occurs when all

D2D pairs are a member of the conflict set of all other D2D pairs).
However, in general, the size of Ck will be far smaller than the total
number (K) of D2D pairs in the network. Then, Alg. 3 input is equal to
η=
∑
k∈K |Pk|+

∑
r∈R |Pr|+

∑
k∈K |Ck| = 2KR+K(K−1)/2.

From Theorem. 1, we state that Alg. 3 terminates after a finite number
of iterations. Then it can be stated that under worst case, the time
complexity of Alg. 3 is also linear with respect to the size of input
preference profiles (i.e., O(η) = O(KR + K2−K

2 )). Thus, both
algorithms show reasonable computational complexity for practical
implementation.

4.4 Example Scenario
In this subsection, we provide a detailed discussion supported with
examples for the RB allocation schemes. First, RB allocation using
the partial reuse mode is discussed, i.e., Alg. 2. Then, we discuss the
RB allocation process for the full-reuse mode i.e., Alg. 3. Moreover,
we elaborate in detail the effect of externalities and their consequences
if not well handled.

We consider Fig. 1 as our example for a D2D enabled system,
where the dashed lines represent the interfering links. Note that the
BS interferes with all D2D pairs, which is not shown in the figure.
From Fig. 1, we consider that all D2D pairs choose to use the given
mode (i.e., controlled by the vector α) so the two sides are K =
{k1, k2, k3, k4, k5}, andR = {r1, r2, r3}. Let PK and PR, represent
the preference profile of all players as follows:
Pk1 = Pk5 = {r1, r3, r2}, Pr1 = {k1, k2, k5, k4, k3}, qr1 = 1,

Pk2 = {r3, r1, r2}, Pr2 = {k5, k4, k2, k1, k3}, qr2 = 3,

Pk3 = Pk4 = {r2, r3, r1}, Pr3 = {k4, k2, k5, k1, k3}, qr3 = 1.

4.4.1 Partial-Reuse Mode
We first check the case when the partial-reuse mode (i.e., y = 1)
is activated. Under this mode, there is no co-tier interference (no
externalities among D2D pairs), thus we have a one-to-one matching
scenario. From Alg. 2, all five D2D pairs propose to their respective
preferred RBs simultaneously. Note that the BS manages the RBs
preference profiles. From the preference profiles, we can see that k1

and k5 propose to r1, k2 proposes to r3, and k3 and k4 propose to r2

at time instant t. At t, we have:
µ(r1) = k1, µ(r2) = k4, µ(r3) = k2.

Now at time instant t + 1, the rejected D2D pairs k3 and k5 will
update the preference by removing the RBs that have rejected them
and then propose to the next best option, i.e., r3 for both rejected D2D
pairs. On receiving these proposals, r3 compares its current match
with the new proposals. It chooses the best among them (i.e., k2) and
rejects the rest (i.e., k3, k5). Now, the rejected pairs again update and
propose until there are no more RBs to propose or all D2D pairs are
matched. Finally, we have the following matching:

µ(r1) = k1, µ(r2) = k5, µ(r3) = k2.

4.4.2 Full-Reuse Mode
Now consider the second case, i.e., the full-reuse mode (y = 0).
As stated earlier, this is a one-to many matching. For ease of under-
standing, we assume each pair has a uniform interference (opposed
to dynamic interference) on all RBs and a predefined quota for RBs
(i.e., qr1 = 1, qr2 = 3, qr3 = 1). Under this scenario, each D2D
pair first identifies its conflict set and sends it to the BS. Note that
this is done only once in the initialization phase. Additionally, this
is important for handling the externalities as explained in Sec. 4.2.3.
Considering Fig. 1, the conflict set using (33) is Ck1 = {φ}, Ck2 =
{k3, k4}, Ck3 = {k2, k4}, Ck4 = {k2, k3}, and Ck5 = {φ}.

Similar to the first scenario, all D2D pairs propose to the most
preferred RBs at time instant t and we obtain

µ(r1) = k1, µ(r2) = k4, µ(r3) = k2.
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This information is broadcast in the network by the BS. Note that,
k5 is rejected by r1 due to the quota limitation qr1 = 1, but k3 is
rejected by r2 because k3 ∈ Ck4 (i.e., k3 exists in the conflict set of
a D2D pair k4) and from Pr2 , we have k4 �r2 k3. After receiving
the current matching of all D2D pairs, we recalculate their respective
utilities using (29) and re-rank all the RBs according to their utility. In
this example, k3 and k4 change their preferences from r3 �ki r1 to
r1 �ki r3 because µ(r3) = k2 and k2 ∈ Cki , where i = 3, 4. Hence,
the new preference list, at time instant t+ 1 is as follows:

Pk1 = {r1, r3, r2}, Pr1 = {k1, k2, k4, k3}, qr1 = 0,

Pk2 = {r3, r1, r2}, Pr2 = {k4, k2, k1, k5}, qr2 = 2,

Pk3 = {r1, r3}, Pr3 = {k4, k2, k5, k1, k3}, qr3 = 0,

Pk4 = {r2, r1, r3},
Pk5 = {r3, r2}.

Now the rejected pairs, i.e., k3 and k5, propose to r1 and r3, re-
spectively; k3 and k5 are rejected by r1 and r3 because µ(r1) �r1 k3

and µ(r3) �r3 k5 with qr = 0. Again, all pairs update the preference
profiles accordingly. k3 and k5 again propose at time instant t + 2
with the update preference list to r3 and r2, respectively. k3 is again
rejected because µ(r3) �r3 k3 and qr3 = 0, but k5 is accepted
because qr2 = 2 and k5 /∈ Cµ(r2). Therefore, the final matching from
Alg. 3 is

µ(r1) = k1, µ(r2) = k4, k5 µ(r3) = k2.

Note that k3 has no more RBs to propose to and all the other
D2D pairs are matched. Thus, the algorithm stops. Furthermore, we
can observe that the spectral efficiency is improved by reusing the
resources more in Alg. 3 (4 D2D pairs on 3 RBs) compared to Alg. 2
(3 D2D pairs on 3 RBs). However, Alg. 3 has an additional overhead
due to coordination (i.e., conflict set information and matching update)
compared to Alg. 2.

4.4.3 Full-Reuse Mode without Handling Externalities

Now consider the case where externalities are not handled. This means
there is no conflict sets information available. Under this scenario,
with the same initial quota information, k1 and k5 propose to r1, k2

proposes to r3, and k3 and k4 propose to r2 at time instant t. We
obtain the following matching:

µ(r1) = k1, µ(r2) = k3, k4 µ(r3) = k2.

With this matching, the problem arises with µ(r2), as both pairs
when assigned to r2 interfere with each other. This can reduce their
actual utilities when compared to other RBs. Thus, they may be willing
to switch to a new RB that provides them a higher utility. Assuming
their second choice is better than their current match, then at time
instant t + 1, the rejected pair k5 and both unsatisfied pairs k3 and
k4 propose once more to their best choices; they apply to r3 in this
example, and r3 chooses k4 due to the quota limitation. We then have

µ(r1) = k1, µ(r2) = φ µ(r3) = k4.

With this assignment, we can see that both k3 and k4 prefer r2 and
that r2 also prefers them to its current match. Both pairs will propose
again in the next time instant and will be accepted. This brings us
back to the initial case. Thus, under the case where externalities are not
handled, these D2D pairs will always switch between their preferences
and will never be able to converge to a stable allocation.

5 SIMULATION RESULTS AND ANALYSIS

We consider a downlink system in which the BS is assumed to be
deployed at a fixed location, and we randomly deploy C cellular
users and K D2D pairs following a homogeneous Poisson point

Table 1: Default Simulation Parameters [45]

Simulation Parameters Values
Radius of MBS 500 m
Carrier frequency (f ) 2 GHz
Frame Structure Type 1 (FDD)
Transmission Time Interval (TTI) 1ms
Total transmit power of BS 46 dBm
Total transmit power of D2Ds 23 dBm
System bandwidth 3MHz
Bandwidth of each RB (W ) 180 kHz
Number of subcarriers per RB 12
Neighboring subcarrier spacing 15 kHz
Modulation and coding scheme (MCS) [46] QPSK: 1/12, 1/9, 1/6, 1/3, 1/2, 3/5

16QAM: 1/3, 1/2, 3/5
Path loss (cellular link) 128.1 + 37.6 log(d), d[km]
Path loss (D2D links) [47] 32.45 + 20 log(f) + 20 log(d), f[MHz]
Shadow fading standard deviation [47] 3 dB
Proximity of D2Ds (R2) random {20 ∼ 30} m
Thermal noise for 1Hz at 20 ˙C −174 dBm
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Figure 3: Real-time performance of the learning scheme when K = 20
with system bandwidth 3 MHz.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized performance gap, ε

P
r 

(ε
≤

ε
0
)

Emprical CDF

← 1 − 1/e 

εK=40
εK=30
εK=20

Figure 4: Normalized Gap (CDF)

process (PPP). We assume the system bandwidth to be 3 MHz3 which
is occupied by the C cellular users. Moreover, we consider a full
buffer model for all K D2D pairs. The main parameters used in
our simulations are shown in Table 1 unless stated otherwise. These
parameters are chosen according to the system model guidelines in
[45]–[47]. Note that, all statistical results are averaged over 100 runs
of random locations of D2D pairs, cellular users, and RB gains.

5.1 Simulation Results for Learning
In this subsection, we perform simulations to evaluate our proposed
learning scheme. For this simulation, we first generate an instance
of network with K = 20 D2D pairs. We then evaluate the following
aspects of the learning scheme: the convergence of the learning scheme

3. The methodologies developed in this paper can also be applied to any value
of system bandwidth. The motivation for our choice (i.e., 3 MHz) is to analyze the
performance under dense environment with peak network traffic and for the sake of
simulation simplicity.
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Figure 5: Performance of Learning scheme with varying network size. The error bars indicate 95% confidence intervals.
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Figure 6: Average utility under various tolerance levels.

and the normalized performance gap. Second, we generate instances
of the network starting from K = 5 to K = 50. For this simulation,
we run each instance 100 times to obtain the sample average of utility,
the average number of successfully joined4 D2D pairs in the system,
and the average stopping time for convergence. Note that for these
simulations, we assume the cellular-tier interference tolerance level
to be fixed at Irmax = −80 dBm for all RBs. Finally, to evaluate
our learning scheme, we define the normalized performance gap as
follows:

ε(t) = 1− U(t)

Umax
, (34)

where U(t) is the utility at time-slot t, and Umax = maxf∈F Uf . We
use the built-in simulated annealing functions in MATLAB to obtain
optimal solution Umax.

Fig. 3a shows the real-time utility values calculated using (4)
along with its time average values, which are obtained by means of
a sliding window. We observe that as the time slot increases, each
D2D pair learns its possible configurations and chooses high utility
configurations with high probabilities. Despite the fluctuations of the
utility, the time average values show an increasing trend in Fig. 3a.
This shows that the learning scheme converges in probability. However
once the convergence is achieved, the configurations do not change,
i.e., after time-slot 184. In Fig. 3b, we can see the corresponding
performance gap calculated using (34), which has a descending trend
with time. Furthermore, after a very short time-period (less than
20), we observe that the ε(t) values becomes less than ε0, where
ε0 = 1 − 1/e, which is the typical gap for randomized greedy
algorithms [48].

In Fig. 4, we test the normalized performance gap under three
cases, K = 20, K = 30, and K = 40. It is observed that
under all cases, the learning scheme converges to a near optimal
solution. Additionally, when the ratio of the available RBs (i.e., 15
RBs with system bandwidth 3 MHz) to the number of D2D pairs
satisfies (RK ≥ 0.5), the mode selection does not affect the gap

4. Successfully joined D2D pairs represent the D2D pairs which choose to use
the given mode and are also allocated RBs.

and the normalized performance gap is below the randomized greedy
algorithm gap (ε0). However, if the ratio of available RBs to the
number of D2D pairs is less than 0.5, (i.e., R

K < 0.5) (e.g., the
K = 40 case), the impact of mode selection becomes apparent and
increases the performance gap from the optimal. Still, as shown in
Fig. 4, Pr{ε ≤ ε0} > 0.9 for the majority of the time. This shows
that the learning scheme selects the best mode of operation according
to the network size the majority of the time, i.e., for a large network
size (K = 40), the full-reuse mode is selected. Hence, we can infer
that the network operates under the best configurations for most of the
time.

Figs. 5a and 5b show the average utility achieved and fraction
of successful joined D2D pairs for different network sizes, K. We
observe that the utility increases with the network size despite a fixed
number of RBs, i.e.,R = 15. This is because according to the network
size, the learning algorithm switches to the best suited mode, i.e., the
partial-reuse mode for a small network size or the full-reuse mode
for a larger network size. However, as the network size becomes
larger (K ≥ 40), the average utility approaches a saturation state
due to limited RBs and the predefined Irmax values. This trend is also
evident in Fig. 5b, where the fraction of successfully joined D2D
pairs decrease drastically after the saturation point (i.e., K ≥ 40).
In Fig. 5c, we evaluate the average stopping time for our learning
scheme. It can be seen that for all network sizes, the learning scheme
has a reasonable stopping time that increases sub-linearly with the
network size. Moreover, it is observed that the stopping time has high
confidence intervals which are a result of the mixing characteristic of
the underlying Markov chain.

5.2 Simulation Results for Resource Allocation
In order to evaluate the performance of the RB allocation schemes,
first, we show the comparison in terms of average utility achieved by
enabling the full-reuse and partial-reuse mode schemes under different
network sizes (i.e., the number of Joined D2D users, K). Second, we
evaluate the average utility for four different system bandwidth values,
i.e., 1.4 MHz, 3 MHz, 5 MHz, and 10 MHz for a fixed network size,
i.e., K = 50. Finally, we show the average number of iterations
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Figure 8: Average number iterations vs. network size, for different tolerance levels.
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Figure 7: Average utility of the proposed FR-RA and PR-RA schemes
under various tolerance levels with K = 50.

resulting for different network sizes. Note that, the performance of the
RB allocation scheme depends upon the predefined max interference
level Irmax of the RB r. Therefore, we analyze the performance of RB
allocation schemes with respect to three different maximum interfer-
ence tolerance thresholds set by the cellular tier, Imax = −120,−100,
and −80 dBm [35], [49]. In our simulations for all D2D pairs K, we
set the co-tier interference threshold to ζk = 10 dB (i.e., between two
D2D pairs).

We compare our proposed approaches with two other approaches:
1) The first approach (Baseline 1) is a distributed algorithm that is
based on the one-to-many matching game, similar to our proposed
algorithm for the full-reuse mode; however, no inter-tier interference
among the D2D pairs is incorporated (i.e., without externalities). This
approach aims to maximize the utility of all D2D pairs in the network
while providing cellular tier interference protection. However, this
approach is unstable due to the reasons discussed in Sec. 4.4.3. This
benchmark algorithm is in line with some existing works used for
RB allocation such as [35], [50], [51], 2) The second is a centralized
approach (Baseline 2) that uses the Hungarian assignment method for
RB allocation [52]. Results corresponding to the full-reuse mode and
partial-reuse mode algorithms are denoted as “FR-RA”, and “PR-RA”,
respectively.

In Fig. 6, the achievable utility by D2D pairs is shown with
respect to three different Irmax values for system bandwidth value of
3 MHz (i.e., 15 RBs). In this simulation, we increase the network size
(D2D pairs) and observed the average utility. First, we find that for
the FR-RA and Baseline 1 schemes, the average utility increases as
the network size grows. However, for Baseline 1, after the network
size is sufficiently large (above 30 D2D pairs and higher), the utility
starts to degrade. The reason for this performance degradation is as
the network size increases, the inter-D2D interference also increases,
which degrades the performance. A performance gain in terms of
average utility up to 35%, 27%, and 13% under Irmax = −80,
−100, and −120 dBm, respectively is observed by the FR-RA when
compared to Baseline 1 for a network of 50 D2D pairs.

Second, the utility saturates as the network grows when Irmax =
−80 and −100 dBm for the PR-RA and the Baseline 2 schemes.
This is because of the limited amount of RBs (i.e., 15 in 3 MHz of
bandwidth) in the simulation, and both schemes allow a single D2D
pair on an RB. Therefore, only the best one is allocated to the RB.
Moreover, the performance of the PR-RA scheme and Baseline 2 is
indistinguishable under all scenarios.

Third, it is observed from Figs. 6a, 6b, and 6c that the FR-RA
scheme is highly affected by different Irmax thresholds compared to the
PR-RA scheme (i.e., at Irmax = −120 dBm, the utility drops to up
to 52% of the utility obtained at Irmax = −80 dBm). This is mainly
because the interference protection constraint becomes stricter and a
smaller number of users can reuse the RBs in the FR-RA scheme,
whereas in the PR-RA scheme, only one D2D pair is using the RB.
Moreover, for a loose protection threshold (i.e., Irmax = −80 and
−100 dBm), the FR-RA scheme yields a performance benefit of up
to 158% and 123% compared to the PR-RA scheme, whereas for
a tighter protection threshold, Irmax = −120 dBm, the performance
gain is reduced to 36%. Finally, we can infer that for a network size
of less than 15 D2D pairs, the performance of all the schemes are
indistinguishable.

Fig. 7 compares the performance of the proposed FR-RA and PR-
RA schemes. In this simulation, we fix the network size to 50 D2D
pairs for four different system bandwidth values, i.e., 1.4 MHz (6
RBs), 3 MHz (15 RBs), 5 MHz (25 RBs), and 10 MHz (50 RBs)
under different Irmax values. It can be observed that under all Irmax
values, the average utility of the PR-RA scheme increases. This is
because the unassigned D2D pairs are able to acquire RBs as the RBs
in the system are increased. Moreover, we find that, the average utility
for the FR-RA scheme almost saturates as the number of RBs increases
in the system. The main reason for such an action is that under loose
interference thresholds ranging from Irmax = −80 to − 100 dBm,
most of the D2D pairs get RBs assigned and under tight interference
thresholds Irmax = −120 dBm, a few D2D pairs are allocated RBs
while the rest are rejected.

Fig. 8 compares the average iterations versus the network size for
two different system bandwidth values, i.e., 1.4 MHz, and 3 MHz.
It can be observed that for a loose interference tolerance threshold
level Irmax = −80 dBm (Fig. 8a), the proposed FR-RA scheme has
a remarkable convergence time and does not exceed an average of 5
and 7 iterations for all network sizes for both 1.4 MHz, and 3 MHz
cases, respectively. This fast convergence time can be achieved due
to the loose tolerance threshold level, as most of the D2D pairs are
accepted at their initial proposals (line 15 of Alg. 3). Additionally,
the average iterations increase with the network size because of the
increase in inter D2D interference (i.e., less than 3 average iterations
for a network size of 10 compared to 7 average iterations for a network
size 50). However, the use of the PR-RA scheme under Irmax = −80
has a higher number of average iterations for both the 1.4 MHz (less
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than 6) and 3 MHz (less than 8) cases compared to the FR-RA scheme
for all network sizes. In the PR-RA scheme, for a relatively loose Irmax
value, all the users meet the interference constraint (line 9 of Alg. 2).
Then, to assign an RB to a D2D pair, all low ranked D2D pairs have
to be analyzed and rejected (lines 10-15 of Alg. 2). This increases the
average iterations even for a small network size (i.e., less than 15).
However for a tighter Irmax value (Fig. 8b and Fig. 8c), a number
of D2D pairs will be initially rejected due to tighter interference
constraint (line 9 of Alg. 2), which reduces the average iterations for
a small network size. In the FR-RA scheme, at a tighter interference
tolerance threshold level of Irmax = −100 dBm (Fig. 8b), the average
number of iterations also increases as the network size increases, but
does not exceed an average of 6 and 9 iterations for all network sizes
with 1.4 MHz and 3 MHz bandwidth, respectively. Moreover, under
Irmax = −120 dBm (Fig. 8c), the average iteration converges to 14
and 6 iterations for even a small network size (i.e., less than 5 D2D
pairs) when bandwidth values of 3 MHz and 1.4 MHz are considered,
respectively. This is because most of the D2D pairs are rejected by
RBs due to the tight Irmax (line 7 of Alg. 3). This then forces the pairs
to propose to the next RBs, and consequently most of the D2D pairs
re-propose until they are either accepted or rejected by all RBs in the
system. Note that under all cases, the average number of iterations will
always be less than the number of RBs. This can be achieved due to a
completely distributed design of the FR-RA and PR-RA schemes.

6 CONCLUSION

In this paper, we designed a resource allocation framework for D2D
communication over cellular networks by using Markov approxima-
tion and matching-game approaches. We considered two important
aspects: mode-selection and resource block allocation for the perfor-
mance of the D2D network. We used a learning framework based
on Markov approximation in which we have designed a problem
specific Markov chain that converges close to an optimal solution
with probability one. Furthermore, we proposed novel resource allo-
cation algorithms based on matching theory that can work within the
proposed learning framework. These resource allocation algorithms
help us obtain a stable resource allocation that is a locally optimal
solution of an NP-hard resource allocation problem at each time slot
of the Markov approximation process. Our framework has shown that
it achieves a stable, distributed and scalable solution for the network.
Simulation results have shown that the proposed framework con-
vergence in probability, achieves interference protection and closely
approaches the optimal solution. Furthermore, we have also validated
the stability and convergence of the resource allocation algorithm.
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