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Hierarchical Matching Game for Service Selection and Resource
Purchasing in Wireless Network Virtualization

S. M. Ahsan Kazmi, Nguyen H. Tran, Tai Manh Ho, and Choong Seon Hong*

Abstract—Wireless network virtualization is identified as one of the
key enabling technologies to bring fifth generation networks into fruition.
In this paper, we study the service selection and resource purchasing
problem for a virtualized network. We model this problem as a two-stage
combinatorial optimization problem. To solve this problem, we propose
a hierarchical matching game based scheme which enables distributed
implementation while satisfying the requirements of efficient resource
allocation and strict isolation. Simulation results show that the proposed
hierarchical matching algorithm outperforms the fixed sharing approach
by 32% and achieves up to 97% of performance obtained by the optimal
approach (general sharing scheme) in terms of average sum rate while
converging in a reasonable amount of time.

Index Terms—matching games, slice allocation, wireless network
virtualization.

I. INTRODUCTION

Wireless Network Virtualization (WNV) is a promising candidate
to support the deluge of cellular traffic for the forthcoming fifth
generation (5G) networks [1]. In a WNV, infrastructure providers
(InPs) provide their physical resources as a service to the mobile
virtual network operators (MVNOs) to serve its users. The physical
resources (i.e., spectrum, power, backhaul/fronthaul, and antennas) of
an InP are abstracted into isolated virtual resources (i.e., slices) which
are then transparently shared among different MVNOs. Efficient
allocation of physical resources to end users have received significant
attention in a single-cell WNV scenario [2]. However, a practical
deployment of a WNV involves a multi-cell scenario where the
coverage area of a specific region will be serviced by a set of InPs.
Then, a significant challenge pertaining to such a scenario is the
efficient allocation of the resources such that the total performance
of WNV over a specific region is improved. Moreover, traditional
resource allocation approaches based on single-cell WNV do not
directly apply to multi-cell WNV.

Typically resource allocation in WNV can be done either by
directly allocating resources from an InP-BS to MVNO users [3],
[4] or allocating resources from an InP to a MVNO that further
decides the allocation for its users [5]. The former approach is
employed by the works in [3], [4] in which the authors investigate
the resource allocation problem in a multi-cell based WNV. They
applied successive convex approximation (SCA) and complementary
geometric programming (CGP) to propose an iterative algorithm
for solving the non-convex optimization problem. However, these
work increases the computation complexity of the InPs due to
large computations required. Furthermore, since MVNOs are not
involved in the resource allocation, the intra-resource customization
cannot be achieved. Through intra-resource customization, MVNOs
can individually decide how the resources within the slice can be
allocated. The works in [5] consider the latter approach for resource
allocation that has shown improved user satisfaction, social efficiency
and resource utilization. By employing such an approach, the resource
allocation problem in WNV becomes a hierarchical (i.e., two-level)
problem for which they propose a two-level hierarchical auction
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Figure 1: System model: The InP owns the physical resources, virtualizes them into
slices and allocates to multiple MVNOs.

scheme. However, the use of auction based game in a multi-cell
scenario requires a third party rule-enforcing authority which collects
all bids and then allocates resources in a centralized manner. We
address these aforementioned challenges by introducing a novel two-
level matching algorithm which is designed to separately capture the
revenue maximization for both the InP and MVNOs (i.e., at each
level) while guaranteeing service contract agreements between the
InP and MVNOs. Inspired by [5], this work also consider a two-
level resource allocation problem following the latter approach for
resource allocation in WNV. In our model, first, service selection is
performed in which users are associated to the MVNOs and then each
MVNO is provided slices from InPs to serve its users. By adopting
such a model, the computational load of an InPs is reduced because
now InP is only responsible for allocating resources to each MVNO
compared to existing works [3], [4] where the resource allocation has
to be obtained directly for all users. In summary, our novelty and
contributions include:
• We formulate the service selection and resource purchasing

problems in multi-cell WNV with the isolation constraint as a
combinatorial optimization problem. Moreover, the problem con-
siders both the revenue maximization for the InPs and MVNOs
while guaranteeing MVNOs service contract agreements.

• To solve this problem, we develop a hierarchal matching algo-
rithm that achieves a near optimal solution and enable distributed
implementation with affordable computational complexity.

• Simulation results show that the proposed hierarchical algorithm
achieves a stable allocation and outperforms the fixed sharing
approach by 32% and achieves up to 97% of average sum rate
obtained by the optimal approach (general sharing scheme).

II. SYSTEM MODEL AND PROBLEM DEFINITION

Consider a downlink of a cellular network consisting a set of N
base stations (BSs), each representing a cell which is owned by an
InP. 1 The InP provides its virtual network service to a set of M
mobile virtual network operators (MVNOs) by individual contracts.
Moreover, a MVNO m ∈ M provides its service to a set Km of
subscribed user equipments (UEs). Then, K = ∪mKm represent the
total number of UEs. We use notation |K| to denote the cardinality
of a set K. Fig. 1 illustrates our system model.

A. Channel Model and Assumptions
Each InP owns a set of Cn orthogonal channels, each with band-

width W . We consider a system with static inter-InP interference such
that the interference from other InPs is absorbed into the background

1InPs belong to different vendors that own orthogonal frequency channels through
administrative licensing.
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noise σ2. Moreover, we assume equal power on every channel of an
InP n, i.e., Pn =

Pmaxn

|Cn| , where Pn is the power on each channel
and Pmaxn is the maximum power of an InP n. Moreover, InP n
provides isolated services by a set of Sn slices, where each slice sn
allocated by InP n to MVNOs m will include heterogeneous number
of channels based on MVNO’s m demand. Then, the data rate for an
UE k on a slice sn of an InP n is:

Rsnn,k =
∑

c∈sn
W log

(
1 + γcn,k

)
, (1)

where γcn,k =
Png

c
n,k

σ2 , gcn,k represents the channel gain between InP-
BS n and UE k on channel c of slice sn.

B. Problem Formulation

The goal in WNV is to maximize the objectives of all UEs, MVNOs
and InPs. Each UE k ∈ K chooses its service as follows:

UE : min.
xk,m∈{0,1}

∑
m∈M

xk,mβ
M
m dk, (2)

s.t.
∑

m∈M
xk,m = 1, (3)

where xk,m ∈ X is the binary variable with xk,m = 1 indicating
that UE k proposes to MVNO m for service selection and xk,m = 0
otherwise, dk represents the demand of the UE k, and βMm represents
the per unit price of MVNO m. Minimizing (2) achieves the UE’s
goal to pay the minimum for its demand and the constraint in (3)
represents that a UE can be serviced by only one MVNO. Next, each
MVNO m aims to serve its UEs by determining the required channels
with the least cost and optimizing its bandwidth according to the slice
price offered by the InP. Then, the MVNO m problem is given as:

MVNO : max.
x̃k,m,ỹ

sn
m,n∈{0,1}

∑
k∈K

x̃k,mβ
M
m dk−∑

n∈N

∑
sn∈Sn

ỹsnm,nβ
I
n|sn|, (4)

s.t.
∑

m∈M
x̃k,m ≤ 1, ∀k, (5)∑

k∈K
x̃k,mlk,n ≤ ỹsnm,n|sn|, ∀n, (6)

where x̃k,m ∈ X̃ is the binary service selection decision variable with
x̃k,m = 1 indicating that UE k proposal is accepted by MVNO m,
ỹsm,n ∈ Ỹ is the binary variable with ỹsnm,n = 1 denoting that MVNO
m proposes to buy slice sn of InP n and ỹsnm,n = 0 otherwise. βIn is
the InP n’s per unit price, and lk,n is the required channels to fulfill
dk on InPs n which is calculated by MVNO (details in Sec. III-A).
Moreover, (5) ensures that k is serviced by at most one MVNO and
(6) ensures that the allocated resources on slice are less than the
capacity of slice provided to a MVNO m by InP n.

Finally, the InP aims to satisfy the demands of MVNOs such that
the contracts agreements are not violated by solving the following:

InP : max.
ysnm,n∈{0,1}

∑
m∈M

∑
sn∈Sn

ysnm,n(
∑
k∈Km

log(Rsnn,k) + ωβIn|sn|) (7)

s.t.
∑

m∈M

∑
sn∈Sn

ysnm,n ≤ |Sn|, (8)∑
k∈Km

∑
sn∈Sn

ysnm,nR
sn
n,k ≥ dm, ∀m, (9)

where ysnm,n ∈ Y is the binary resource purchasing decision of InP
with ysnm,n = 1 indicating that InP n accepts the slice sn buying pro-
posal of MVNO m and dm represents the UE demand of the MVNO
m (i.e., dm =

∑
k∈Km dk). The objective function in (7) represents

the proportional fairness among UEs’ [7] and InP revenue in the
first and second term, respectively. ω is a weight characterizing the
trade-off between fairness and InP’s revenue. One of the fundamental
requirements of WNV is the isolation among different MVNOs which
is achieved by guaranteeing certain predetermined requirements or
contract service agreement (e.g., minimum share of resource or data
rate) by the InP. We consider isolation at the physical resource level,
i.e., channels [5]. Through (8) we ensure that allocated slices are less

than total slices owned by an InP and the constraint in (9) ensures
the contract agreement that is considered as an isolation constraint.

Unfortunately, the optimization problem that optimizes the ob-
jectives of all UEs, MVNOs and InPs is a mix integer linear
programming problem, which is NP-hard due to its combinatorial
nature [6]. Obtaining a central optimal solution (e.g., using exhaustive
search) for this problem incurs: i) heavy computational workload, and
ii) privacy issues between UEs, MVNOs and InPs. Therefore, by using
matching theory which has the ability to solve combinatorial problems
[8], we present a distributed approach. Our approach consists of two-
level matchings that is able to find a suboptimal solution without any
third party rule-enforcing authority and achieve lower-complexity.

III. HIERARCHICAL MATCHING GAME
The proposed hierarchical matching game consists of two levels

in which matching between UE and MVNO is performed in the
low-level while matching between MVNO and InP is at high-level.
Both matching problems can be formulated as a two-sided matching
game. Specifically, in the high-level, the InP, who owns the physical
resources, acts as the vendor and the MVNOs act as the buyer.
In the low-level, each MVNO plays the vendor role and the UEs
act as the buyers. It is assumed that each buyer can be associated
to only one vendor. However, a vendor can accommodate multiple
buyers. Thus, our design corresponds to a many-to-one matching [8]
given by the tuple (B, V, qv,�B ,�V ). Here, �B , {�b}b∈B and
�V , {�v}v∈V represent the set of the preference relations of the
buyers B and vendors V , respectively.
Definition 1. A matching µ is defined by a function from the set
B ∪ V into the set of elements of B ∪ V such that: (i) |µ(b)| ≤
1 and µ(b) ∈ V, (ii) |µ(v)| ≤ qv and µ(v) ∈ 2|B| ∪ φ, where qv
is the quota of v, and (iii) µ(b) = v if and only if b is in µ(v).
A. Low-level matching game between MVNO and UE

In the low-level, UEs and MVNOs form the two sides of the
matching game. However, in our model, each MVNO m can buy
resources from multiple InPs. Therefore, inspired by the works in [11],
for each MVNO m, we create n dummies (n ∈ N that represents the
InP-BS), where each dummy MVNO 2 is represented by mn. Then,
the matching is performed on the basis of preference profiles of UEs
and these MVNOs, denoted by Pk and P lmn (MVNO in low-level
game), to rank potential matchings based on the local information.
Then, from (2), a UE k ranks a MVNO mn

3 based on its offered
price in an non-decreasing order given by the following preference
function: Uk(mn) = βMmn , ∀mn. (10)

Similarly, from (4), a MVNO m ranks all UEs based on the
profit they yield in a non-increasing order in its preference profile.
Therefore, we have,

Umn(k) = max(βMmndk − β
I
nlk,n, 0), ∀k. (11)

Note that, the value of dk and gcn,k of UE k are sent to the
MVNO mn. Then to evaluate (11), MVNO mn calculates the required
channels (i.e., lk,n) for a UE k and ranks them based on the profit
they yield in its preference profile P lmn . Moreover, here, a UE k
is assumed to be indifferent towards all the channels provided by a
single InP-BS n because of homogeneous channel gain values (i.e.,
the channel gains values of different channels owned by an InP-BS
are the same for a UE k, while they can be different for different InP-
BSs). Furthermore, if the revenue from a UE k is negative, that UE is
not ranked in P lmn by the MVNO. However from (6), each MVNO
can only serve limited UEs, i.e., qmn

4 which is upper bounded by the
slice provided to it by the InP. Then, the goal is service selection of
each UE k to a MVNO mn via matching.

2In the remainder of this paper, we omit the term dummy without confusion.
3As the price of a MVNO m with n dummies will be same, the UEs will have the

same ranking for these dummy MVNOs mn. To achieve strict ranking for these mn

MVNOs, simply break the tie among these dummy MVNOs mn by random selection.
4qmn represents the available channels of InP-BS n.
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Algorithm 1 Hierarchal Matching Algorithm (HM)
1: initialize: τ = 0,Gτn = 0, ∀n.
2: while Gτn 6= G

τ+1
n do

3: τ = τ + 1.
Stage 1: Low-Level Matching - Service Selection:

4: input: t = 0, q(0)mn = qτmn , Pk(0) = Pk , Pmn
(0) = Plmn , ∀mn, k /∈ G

τ
n.

5: t← t+ 1, ∀k ∈ K, propose to mn according to Pk(t).
6: while k /∈ µ(mn)(t) and P(t)

k 6= ∅ do
7: if q(t)mn ≤ lk,n then
8: P′(t)mn = {k′ ∈ µ(mn)(t)|k �mn k

′} ∪ {k}.
9: k′lp ← the least preferred k′ ∈ P′(t)mn .

10: while (P′(t)mn 6= ∅) ∪ (q(t)mn ≥ lk,n) do
11: µ(mn)

(t) ← µ(mn)
(t) \ k′lp , P

′(t)
mn
← P′(t)mn \ k

′
lp.

12: q(t)mn ← q(t)mn + lk′
lp
,n, k′lp ← k′ ∈ P′mn

(t).

13: Remove rejected players from Pk(t) and Pmn
(t).

14: else
15: µ(mn)

(t) ← µ(mn)
(t) ∪ {k}, qmn

(t) ← qmn
(t) − lk,n.

16: X̃ ← µ∗

Stage 2: High-Level Matching- Resource Purchasing:
17: input: t = 0, q(0)n = qτn, Pmn

(0) = Pumn , Pn(0) = Pn, ∀mn, n.
18: t← t+ 1, ∀mn, propose to n according to Pmn

(t).
19: while mn /∈ µ(n)(t) and P(t)

mn
6= ∅ do

20: if q(t)n ≤ |γmn | then
21: P′(t)n = {mn′ ∈ µ(n)(t)|mn �n mn′} ∪ {mn}.
22: mn

′
lp ← the least preferred mn′ ∈ P′(t)n .

23: while (P′(t)n 6= ∅) ∪ (q(t)n ≥ |γmn |) do
24: µ(n)(t) ← µ(n)(t) \mn′ , P′(t)n ← P

′(t)
n \mn

′
lp.

25: q(t)n ← q(t)n + |γmn′ lp|, mn
′
lp ← mn

′ ∈ P′n
(t).

26: Remove rejected players from Pmn
(t) and Pn(t).

27: else
28: µ(n)(t) ← µ(n)(t) ∪ {mn}, qn

(t) ← qn
(t) − |γmn |.

29: Y ← µ∗

30: Update Gτn, ∀n.
31: output: Convergence to group stable Gn, ∀n.

B. High-level matching game between MVNO and InP
Once a solution to the low-level matching game is obtained, we can

solve the high-level game. Here each MVNO (i.e., dummy MVNO)
require a slice from a specific InP to serve the UEs matched to it in the
low-level stage (i.e., µ(mn)). We denote the demand of each MVNO
as dmn =

∑
k∈µ(mn) dk. Now both MVNOs and InPs define their

respective preference profiles as Pumn (MVNO in high-level game)
and Pn. Once low-level game is solved, then a MVNO targets to
reduce its cost to obtain slices. Therefore from (4), MVNO m ranks
InPs based on their price in an non-decreasing order as:

Umn(n) = βIn, ∀n. (12)
For the InPs, through (7), the goal is to maximize its revenue

by selling its slices while achieving fairness among matched UEs.
Therefore, it ranks the buyers in a non-increasing manner:

Un(mn) =
∑

k∈µ(mn)
log(Rsnn,k) + ωβInγmn , ∀mn. (13)

Here, we assume that the values of dmn and the set of UEs that
are matched in the low-level stage (i.e., k ∈ µ(mi)) are sent to the
InPs in the proposal phase. Then, InP calculates the required slice
size, i.e., γmn to fulfill MVNO’s mn demand. This information is
required by the InP to rank a MVNO mn through (13). Once this
information is acquired, each InP can rank all the MVNOs.

C. Hierarchical matching Algorithm

For the two-sided hierarchical matching game, our goal is to seek a
stable matching, which is a key solution concept in matching theory
[8], [10]. To find a stable matching, the deferred-acceptance algorithm
can be employed [10]. However, our formulated game involves a
hierarchal structure and heterogeneous demands of buyers. Due to
heterogeneous demands, a vendor allows variable numbers of buyers
until its quota constraint is not violated [12]. These aforementioned
challenges prevent the use of standard deferred-acceptance algorithm.
Therefore, we formally define the blocking pair for the formulated
game as follows:
Definition 2. A matching µ is stable if there exists no blocking pair
(A′, v) ∈ 2|B| ∪ V with A′ 6= φ, such that, v �b µ(b), ∀b ∈ A′

and (A ∪A′) �v µ(v), A ⊆ µ(v), where µ(b) and µ(v) represent,
respectively, the current matched partners of vendors and buyers.

Definition 2 is based on the following intuition, a pair (A′, v) blocks
a matching µ, if vendor v is willing to accept the buyers in A′,
possibly after rejecting some of its current buyers in µ(v), i.e., A ⊆
µ(v) and all buyers b ∈ B prefer v over their current match µ(b).
In our game, a stable solution ensures that no matched vendor v
would benefit from deviating from their assigned buyers b with a
new buyer b′. To tackle this challenge, we propose a novel stable
matching algorithm in Alg. 1. The algorithm has two stages namely,
the Low-Level Matching- Service Selection stage and the High-Level
Matching- Resource Purchasing stage. However, Definition 2 is not
enough for stating the stability for our proposal as our game involves
a hierarchal structure. In hierarchical games, a change in player’s
strategy at a low-level will cause changes in strategy set of players
at higher level and, thus, the convergence cannot be achieved until
the strategy set of players at low-level is fixed. Therefore, to find
a stable solution, we have to guarantee that no change in players’
strategy occurs at the low-level once convergence is achieved [9]. We
address this challenge by creating a group Gn for each InP n which
is formed as a result of both low-level (i.e., µ(mn)) and high-level
(i.e., µ(n)) stages. Finally we prove that Alg. 1 converges to a group
stable allocation. Formally, we define the group stability as:
Definition 3. The group Gn,∀n ∈ N is said to be stable if it is not
blocked by any group G′n which is represented by the following two
conditions: i) No UE k outside the group Gn can join it. ii) No UE
k inside the group Gn can leave it.

After initialization (line 1), all UEs that do not belong to any
group Gτn join the low-level stage and build the preference profiles
for iteration τ . Then, each unassigned UE k proposes to its most
preferred MVNO mn according to Pk (lines 5-6). i) If MVNO mn

quota is full, then, it finds the current matched UEs k′ that ranks lower
than k in its preference profile i.e., P ′(t)mn . Each least preferred UE
k′lp ∈ P ′mn

(t) is then sequentially rejected until k can be admitted
or there is no additional k′ to reject (lines 7-12). If MVNO mn

still has insufficient quota to admit k, then k is also rejected. All
rejected UEs and MVNOs then update there respective preference
profiles by deleting the rejected players (line 13). ii) Otherwise, k
is accepted and the MVNO mn updates its quota (lines 14-15).
This process is carried out iteratively until either all the UEs are
assigned to MVNOs or there are no more MVNOs to propose.
This stage terminates when the outcome of two consecutive stage
iterations t remains unchanged [10]. The output of this stage µ∗ can
be transformed to a feasible service selection vector X̃ . After the low
level matching, MVNOs and InPs build their respective preference
profiles based on the output of low-level matching. Similar to the
low-level matching, same iterative accept-reject procedure (lines 17-
29) is applied to find a stable matching µ∗ which can be transformed
to a feasible resource purchasing vector between MVNOs and InPs,
i.e., Y . On completion of this stage, each InP n, then updates its group
Gn = {(k,mn)|k ∈ µ(mn),mn ∈ µ(n),∀k,mn} which constitutes
the accepted UEs and MVNOs at both stages (line 30). Furthermore,
the rejected buyers in both stages, i.e., UE k in low-level and MVNO
mn (consists of UEs that were accepted in low-level by mn) will
enter into the next iteration τ + 1 as new UEs. Then, both these
stages will be executed again with updated values of remaining InP
and MVNO quotas. The algorithm terminates once the groups Gn,∀n
do not change for two consecutive iterations (line 31). This represents
that there is no further requests from UEs or there exists not enough
InP-BS resources to fulfill UEs request.
Theorem 1. Each stage of Alg. 1 achieves a stable matching.
Proof. The proof is similar to the one provided in [12].

Theorem 2. Alg. 1 converges to a group stable output Gn,∀n ∈ N .
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Figure 2: Average sum-rate of HM,
GS, and FS schemes.
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Figure 3: Average sum-rate vs. net-
work size for varying InP-BS density.
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Proof. The proof is omitted here for brevity.

IV. SIMULATION RESULTS

To simulate our proposal we consider the standard parameters of
cellular technologies that follow the system guidelines given in [13].
Moreover, a network with 5 MVNOs that rent slices from N InP-
BSs to serve randomly located K UEs inside the coverage area
of 1000 × 1000 m. Each InP owns a band of 1.4 MHz (i.e., 6
channels or resource blocks). Moreover, the bandwidth W of each
channel and weight parameter ω are set to a normalized value of
1. In our simulation, each UE k has a demand which is uniformly
distributed in the range of dk = {1 ∼ 3} bps/hz. Note that in this
work we do not differentiate between the priority of user demands
and assume all users’ demand have homogeneous priority. We set
the prices for MVNOs and InPs that is also uniformly distributed
in the range of βMm = {4 ∼ 8} and βIn = {2 ∼ 4} monetary
units/bps/hz, respectively. Furthermore, all results are obtained by
averaging over a large number of independent simulation runs, each of
which realizes random traffic demands, pricing, locations of InP-BSs,
UEs, and channel power gains. For comparison purposes, we compare
the proposed algorithms with two baseline schemes [5]. First, a fixed
sharing scheme (FS), where each MVNO reserves equal number of
the channels. This fixed sharing can also be viewed as the case in
which there is no wireless virtualization and a comparison of the
proposal with FS scheme reflects the benefits achieved by WNV over
the traditional cellular networks. Second, a general sharing scheme
(GS) in which the MVNOs are not involved and the InP directly
performs a single-level matching for the channel allocation, which is
in line with some existing works such as [3], [4].

In Fig. 2, the average sum-rate versus the network size, (i.e.,
number of UEs) is shown for the different schemes. It is observed that
the sum-rate increases with network size, which, however, saturates
as the network size becomes sufficiently large. This is due to the
limited network bandwidth for each InP (i.e., 1.4 MHz). We also
observe that the sum-rate obtained by HM and GS schemes result
in an indistinguishable performance. Specifically, the HM scheme
can achieve up to 97% of the average sum rate obtained by the
GS scheme, for a large network size (i.e., |K| > 20). Thus, it can
be inferred that the HM scheme is close to optimal. Moreover, a
performance benefit up to 32% can be achieved when compared to
the FS approach for |K| > 15. Next, in Fig. 3, the average sum-rate
vs network size is shown with varying number of InP-BS for the
HM scheme. We observe that the average sum-rate increases when
both the network size and InP-BS density increase. This is due to
additional availability and allocation of channels in the servicing area.
Similarly, in Fig. 4, the average sum-rate of HM scheme increases
with network size for varying each InP-BS bandwidth from 1.4 to
20 MHz (i.e., 6− 100 channels). Furthermore, we observe that when
the operating InP-BS bandwidth is higher than 15 MHz (i.e., 75
channels per InP-BS), the sum-rate saturates and does not increase as
the network has enough resources to fulfill all network sizes demands.
Finally, a comparison of average iterations of HM scheme under
different network sizes with varying InP-BS bandwidth is shown in
Fig. 5. The HM scheme achieves convergence under all scenarios

in few iterations. However, the iterations increase with the network
size because of the increasing number of UE’s proposal and accept-
reject procedure of HM. Moreover, we also infer that as the InP-
BS bandwidth is increased from 1.4 MHz to 20 MHz, the average
iterations decrease. This can be explained as bandwidth increases,
there are sufficient channels to meet the demands. Therefore, less
iterations are required to converge to a stable group as most of the
proposals are accepted by the sellers due to large available quota (i.e.,
channels).

V. CONCLUSION

In this paper, we proposed a hierarchical matching algorithm
for service selection and resource purchasing in wireless network
virtualization. Distributed implementation of the proposed algorithm
has also been discussed in detail. Numerical studies have shown
that the proposed hierarchical matching algorithm converges in a
reasonable amount of time. Moreover it outperforms the fixed sharing
algorithm and achieves a comparable performance to a general sharing
approach in terms of average sum-rate. As a future extension, we
intend to include dynamic pricing and study its impact on the system’s
performance.
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