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Abstract—The dense and pervasive deployment of wireless small
cells can boost the performance of existing macrocellular networks;
however, it poses significant challenges pertaining to the cross-tier
interference management. In this paper, the downlink resource
allocation problem for an underlay small cell network is studied. In
this network, the protection of the macrocell tier is achieved by im-
posing cross-tier interference constraints in the resource allocation
problem. To solve the underlying mixed-integer resource allocation
problem, we propose two different algorithms. The first algorithm
is developed by applying the duality-based optimization approach
for the relaxed problem, which enables distributed implementation.
The second distributed algorithm which enables coordination is
devised based on matching theory. Simulation results show that
the proposed duality-based algorithm outperforms the greedy
approach by 4% in terms of sum-rate whereas the matching-based
algorithm with tier-coordination yields performance gains up to
17% compared with the duality-based approach.

Index Terms—resource allocation, heterogeneous networks,
matching games, wireless small cell networks.

I. INTRODUCTION
One promising solution for improving the capacity of wire-

less networks is via the dense deployment of small cell base
stations (SBSs). However, effective operation of such SBSs
requires meeting several technical challenges including resource
allocation (RA), interference management (IM), and emerging
network engineering issues.

A centralized approach using a greedy algorithm for RA
has been proposed in [1]; however, this requires heavy mes-
sage passing and suffers from scalability issues for densely
deployed SBSs. In [2], another distributed scheme has been
proposed which achieves a sub-optimal RA solution. However,
this scheme may not be suitable for dense heterogeneous
networks (HetNets) because of high signaling overhead required
to establish reference users for individual SBSs. A distributed
RA scheme with macro-tier protection is proposed in [3] which
is shown to converge to a centrally calculated solution. However,
this approach has slow convergence, which may not be desirable
in dense small cell network.

We address these challenges by introducing two novel algo-
rithms for RA and IM. Both proposed distributed algorithms are
designed to simultaneously enable protection for the macrocell
tier and to operate in large-scale dense networks. Furthermore,
unlike existing algorithms such as in [1], [2], and [3], the pro-
posed matching-based approach achieves efficient coordination
between network tiers with minimal message passing compared
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Fig. 1: Proposed system model. Solid line showing the downlink information
links while dotted line showing the cross tier interference.

to previous works [1], [2]. Our main contributions can thus be
summarized as follows:
• We formulate the RA problem with the macro-tier pro-

tection as a mixed-integer optimization problem.
• To solve this problem, we develop a duality-based RA

algorithm that can achieve a near optimal solution by
uniformly assigning cross-tier interference budget for the
SBSs. This approach enables distributed implementation
and affordable computational complexity.

• By exploiting non-uniform cross-tier interference using a
tier-coordination approach, the network performance can
be improved. However, a duality-based approach with
tier-coordination induces heavy information exchange
[3]. Therefore, based on matching theory, we propose
a second distributed approach with limited information
exchange.

• Numerical results show that, the proposed duality-based
algorithm outperforms the greedy approach by 4% in
terms of sum-rate and the use of matching theory can
significantly improve the overall network sum-rate. This
performance advantage can reach up to 17% compared to
the duality-based optimization approach.

II. SYSTEM MODEL AND PROBLEM DEFINITION
Consider a HetNet consisting of a set of SBSs, B =

{1, 2, ..., J}, located within the coverage of one macrocell
base station (MBS) as shown in Fig. 1. The set of macro-
cell users (MUEs) and small cell users (SUEs) are denoted
by M = {1, 2, ...,M} and S = {1, 2, ..., S}, respectively.
The MBS and SBSs use the same set of orthogonal resources
R = {1, 2, ..., R}.1 However, for any given resource r ∈ R, a
predefined interference threshold Irmax must be maintained for
protecting the MUEs.

A. Resource Allocation and Link Models
We assume that all SBSs transmit using a fixed power (e.g.,

any feasible power for each SBS transmitter) [2]. However,
each SBS can have its own, and different power budgets. In
addition, we assume that the transmit power of each SBS is
equally divided among its resources and, thus, the interference

1One resource corresponds to one subcarrier or subchannel of the LTE
network [3].
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power on each resource is constant. For RA optimization, we
introduce binary variables xrj,k, as follows:

xrj,k =

{
1, if SUE k in SBS j is assigned resource r,
0, otherwise.

We always set xrj,k = 0 for any SUE k, which is not associated
with SBS j. The received SINR pertaining to the transmission
of SBS j to SUE k over resource r with transmit power P rj is:

γrj,k =
P rj g

r
j,k

P rMg
r
M,k +

∑
i∈Ωr,

P ri g
r
i,k + σ2

, (1)

where P rM and P ri ,∀i ∈ Ωr, represent the transmit powers of
the MBS and SBS, respectively, in the set Ωr which are using
resource r. The channel gain between SBS j and SUE k is grj,k
whereas grM,k and gri,k are, respectively, the channel gains from
the MBS and other underlay SBSs i to SUE k. The noise power
is assumed to be σ2. Then, the data rate of user k associated
with SBS j on resource r is given by Rrj,k = W r log(1 + γrj,k)
where W r is the bandwidth of resource r.

B. Problem Statement
Our objective is to maximize the sum rate of all SBSs by

reusing the macrocell resources. The data rate achieved by an
SBS j over all allocated resources is:

Rj =
∑

r∈R

∑
k∈S

xrj,kW
r log(1 + γrj,k). (2)

Moreover, the interference experienced by MUE m on re-
source r is given by Ir =

∑
j∈B

∑
k∈S x

r
j,kP

r
j g

r
j,m, where grj,m

is the channel gain between SBS j and MUE m, on resource
r. Note that the binary RA variables xrj,k ensure that we only
account for the interference created by SUEs that are assigned
the same resource. The considered RA problem can be stated
as follows:

P1: maximize
xr
j,k∈X ,∀k,j,r

∑
j∈B

Rj (3)

subject to
∑

k∈S
xrj,k ≤ 1, ∀r ∈ R,∀j ∈ B, (4)

Ir ≤ Irmax, ∀r ∈ R. (5)

In P1, constraint (4) ensures that each resource can be
allocated to at most one user in each SBS to avoid strong intra-
cell interference ; additionally, constraint (5) ensures the MUE
protection by keeping its aggregate interference below a prede-
fined threshold. Problem P1 is a non-convex, integer problem,
which is difficult to solve for a practical setting with large sets
of users and resources [4]. Typically, solutions presented for
problems similar to P1 requires significant message exchanges
[2], [3]. Therefore, by using optimization and matching theory,
we present two distributed novel and practical algorithms with
minimal message passing (i.e., no message exchange in Alg. 1
due to relaxation and only SBS proposals to MBS in Alg. 2)
which are suitable for a large-scale dense networks of SBSs.

III. OPTIMIZATION-BASED RESOURCE ALLOCATION

A. Problem Relaxation and Dual Decomposition
To develop a practical distributed algorithm for the RA

problem, we decompose the original problem into multiple
problems which can be solved at individual SBSs. Toward this
end, we relax the coupled interference constraint (5) of P1 by
dividing the interference threshold into J parts corresponding to
J SBSs [5]. This guarantees that each SBS is allocated the same
cross-tier interference budget on each resource. Note that more
complex designs can allocate different cross-tier interference
budgets for different SBSs; however, such design would require
heavy message passing among SBSs, which is impractical in

Algorithm 1 Optimization-based distributed RA

1: initialize: t = 0, αr
k(0) ≥ 0, step-size κr(0) > 0;

2: repeat
3: t← t+ 1
4: Each SBS j updates xr

j,k for its SUEs k and αr
k as follows:

• xr
j,k(t+ 1) =

{
1, if r = r∗and k = k∗,
0, otherwise

where, r∗ = arg max
r∈R

(W r log(1 + γr
j,k)− αr

k(t)P r
j g

r
j,m),

k∗ = arg max
k∈S

(W r∗ log(1 + γr∗
j,k)− αr∗

k (t)P r∗
j gr

∗
j,m);

• αr
k(t+ 1) = αr

k(t)− κr(t)(
∑
k∈S

xr
j,k(t)P r

j g
r
j,m − I

r
max

/J),

where, κr(t) > 0 is a step-size.
5: if xr

j,k = 1 and P r
j g

r
j,m > Irmax/J then

6: xr
j,k = 0

7: until αr
k(t+ 1)− αr

k(t) ≤ ε

dense HetNets. Thus, the decomposed problem can be stated as
follows:

P2: maximize
xr
j,k∈X ,∀k,r

Rj (6)

subject to
∑

k∈S
xrj,k ≤ 1, ∀r ∈ R,∑

k∈S
xrj,kP

r
j g

r
j,m ≤ Irmax/J, ∀r ∈ R.

The partial Lagrangian with respect to the interference
constraint of P2 can be presented as L({xrj,k}, αrk) =∑
r∈R Lr(x

r
j,k, α

r
k), where αrk represents the interference price,

and Lr(xrj,k, α
r
k) is equal to:∑

k∈S
xrj,kW

r log(1 + γrj,k)− αrk(
∑

k∈S
xrj,kP

r
j g

r
j,m −

Ir
max

J
).

The dual function g(.) is then given as

g(αrk) =

{
maximize

xr
j,k∈{0,1}∀k,∀r

L(xrj,k, α
r
k)

subject to
∑
k∈S x

r
j,k ≤ 1.

(7)

B. Algorithm Design
Based on the above analysis, we propose, in Alg. 1, an

optimization-based distributed resource allocation algorithm. In
this algorithm, the updates of the interference price αrk(t) can be
conducted in a distributed way since these updates only require
information on the channel gain grj,m, which can be obtained
from the underlying SBS via the MBS. This requires a relatively
small exchange of information compared to the previous works
in [1], [2], and [3]. The convergence can be proved using the
gradient-based standard technique [4], and it converges to a near
optimal solution due to the simplified uniform allocation of the
cross-tier interference budget [5].

IV. MATCHING-BASED RESOURCE ALLOCATION

Although Algorithm 1 provides a low-complexity solution,
it requires relaxing the interference constraints to eliminate
coordination between tiers and maintain the IM process. This
can degrade the network performance. To improve it, a certain
coordination between network tiers for non-uniform cross-tier
interference allocation is required. Hence, a central controller
can be implemented at the MBS to enable coordination among
macro-SBS tiers [1] and to maintain the interference limit Irmax.
In the presence of coordination, we propose a second solution
approach based on matching theory [6].
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A. Matching theory preliminaries

The RA problem can be formulated as a two-sided matching
game. We assume each SUE can use a single resource. However,
different SBSs can use the same resource to improve the
spectrum efficiency. Our design corresponds to a many-to-
one matching[7] given by the tuple (B,R, qr,�B,�R). Here,
�B , {�j}j∈B and �R , {�r}r∈R represent the set of the
preference relations of the SBSs and resources, respectively.
Definition 1: A matching µ is defined by a function from
the set B ∪ R into the set of elements of B ∪ R such that: (i)
|µ(j)| ≤ 1 and µ(j) ∈ R, (ii) |µ(r)| ≤ qr and µ(r) ∈ B ∪ φ,
where qr is the quota of r, and (iii) µ(j) = r if and only if j
is in µ(r).

1) Preferences of the players: Matching is performed on the
basis of preference profiles that can be built by the SBSs Pj and
the controller Pr to rank potential matchings based on the local
information. Note that, on each r, each SBS j will choose its
user k with highest data rate Rrj = maxk R

r
j,k. Then, an SBS j

ranks a resource r based on the following preference function:

Uj(r) = Rrj . (8)

Similarly, for the controller side, each resource r also ranks the
SBSs according to the following preference function:

Ur(j) = Rrj − βIrj , (9)

where Irj = P rj g
r
j,m represent interference produced by SBS

j to the MUE assigned that resource. The first term in (9),
represents the achievable data rate on resource r, the second
term accounts for a penalty due to the interference produced by
SBS j, and β represents a weight parameter. The second term
implies that the controller gives less utility to the SBSs which
cause higher interference to the MUE on resource r.

For the formulated two-sided matching game, our goal is to
seek a stable matching, which is a key solution concept [8].
To find a stable matching, the deferred-acceptance algorithm
can be employed [8]. Traditionally, in one-to-many matching,
a fixed, per player quota on one side is assumed according
to which a fixed number of players of the opposite side can
be matched. However, our formulated matching game involves
a dynamic quota as the controller allows a number of SBSs
(with heterogeneous interference) to use each resource as long
as the interference constraint on that resource is not violated.
This heterogeneous interference of SBSs and dynamic quota
of resources introduces new challenges that prevent the use of
standard deferred-acceptance algorithm. Therefore, we formally
define the blocking pair for the formulated game as follows:
Definition 2: A pair (j, r) is a blocking pair for µ if:

a) Irres ≥ Irj , j �r ∅ and r �j µ(j),

b) Irres < Irj , I
r
res +

∑
j′∈µ(r) Ij′

r ≥ Irj ,
j �r j′ and r �j µ(j),

where Irres = Irmax−Ir represent the residual of the interference
tolerance (remaining quota) on the resource r. The quota of a
resource r ∈ R is filled when Irres < Irj for a requesting j ∈ B.
Definition 2 is based on the following intuition [9]. Whenever
an SBS j prefers a resource r to its assigned resource µ(j),
if either: i) r has sufficient interference tolerance Irres and is
willing to admit j (i.e., j �r ∅), or ii) its quota is filled but
it is able to admit j by rejecting some accepted SBSs which
are ranked lower than j, then j and r can deviate from their
assigned µ(j) and µ(r), respectively. A matching is stable if no
blocking pair exists.

Algorithm 2 Matching-based distributed RA
1: input: Pj , Pr , ∀r, j
2: initialize: t = 0, µ(t) , {µ(j)(t), µ(r)(t)}j∈B,r∈R = ∅, Irres

(t) = Irmax,
Kr

(t) = ∅, Pj
(0) = Pj , Pr

(0) = Pr , ∀r, j
3: repeat
4: t← t+ 1
5: for r ∈ R do
6: for j ∈ B with r as its most preferred in Pj

(t) do
7: while j /∈ µ(r)(t) and P(t)

j 6= ∅ do
8: if Irres

(t) ≥ Irj , then
9: µ(r)(t) ← µ(r)(t) ∪ {j}; Irres

(t) ← Irres
(t) − Irj ;

10: else
11: P′(t)r = {j′ ∈ µ(r)(t)|j �r j

′}
12: jlp ← the least preferred j′ ∈ P′(t)r ;
13: while (P′(t)r 6= ∅) ∪ (Irres

(t) < Irj ) do
14: µ(r)(t) ← µ(r)(t) \ {j′}; P′(t)r ← P′(t)r \ {jlp};
15: Irres

(t) ← Irres
(t) + Ir

j′ ;

16: jlp ← the least preferred j′ ∈ P′r
(t);

17: if Irres
(t) ≥ Irj , then

18: µ(r)(t) ← µ(r)(t) ∪ {j}; Irres
(t) ← Irres

(t) − Irj ;
19: else
20: jlp ← j;
21: Kr

(t) = {k ∈ Pr
(t)|jlp �r k} ∪ {jlp}

22: for k ∈ Kr
(t) do

23: Pk
(t) ← Pk

(t) \ {r}; Pr
(t) ← Pr

(t) \ {k};
24: until µ(t) = µ(t−1)

25: output: µ(t)

2) Proposed algorithm: As a solution to this game, we
propose a novel RA scheme to produce a stable matching
in Alg. 2 which guarantees macro-tier protection captured in
constraint (5). At each iteration t, each r receives proposals
from unassigned SBSs j that rank r as the highest in Pj(t)(lines
5-7). i) If r has sufficient quota Irres

(t) to admit j, it accepts
the proposal and updates Irres

(t) and µ(r)
(t)(lines 8-9). ii)

Otherwise, if the quota of r is filled, then r finds all of its
current matched j′ which have a lower ranking than j according
to Pr(t)(lines 10-11). Each least preferred SBS jlp ∈ P ′r

(t) is
then sequentially rejected, and Irres

(t), P ′r
(t), and jlp are updated

until j can be admitted or there is no additional j′ to reject (lines
12-16). After rejecting all j′ ∈ P ′r

(t), if r still has an insufficient
quota to admit j, then j is rejected and j is set to the jlp (lines
17-20). Finally, the controller removes jlp and its less preferred
SBSs from the Pr(t), and similarly these SBSs also remove r
from their respective Pj(t)(lines 21-23). With this process, we
guarantee that any less preferred SBS will not be accepted by
that resource even if it has sufficient quota to do so, which is
crucial for the matching stability of our design. This process is
repeated until the matching converges (line 24).

Theorem 1: Alg. 2 converges to a stable allocation.

Proof: We prove this theorem by contradiction. Assume
that Alg. 2 produces a matching µ with a blocking pair (j, r)
by Definition 2. Since r �j µ(j), j must have proposed to r
and has been rejected due to interference violation on r (lines
19-20). When j was rejected, then j′ was rejected either before
j (lines 13-16), or was made unable to propose because r is
removed from j′ preference list (lines 22-23). Thus, j′ /∈ µ(r),
a contradiction.

The output µ(t) of Alg. 2 can be transformed to a feasible
allocation vector X of problem P1 (line 25). Note that, the worst
case running time complexity of Alg. 2 is linear in the size of
input preference profiles (i.e., O(JR) where J and R represent
SBSs and resources, respectively) similar to Alg. 1 which also
has a linear complexity (i.e., O(KR), where K represents the
number of SUEs).
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Fig. 2: Rate at Irmax = −60dBm.
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Fig. 3: Rate at Irmax = −100dBm.
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Fig. 5: Comparison of average sum
rate of O-DRA, M-DRA, and Greedy
with UB.

V. NUMERICAL RESULTS

For our simulations, we consider a network with 5 SBSs
each of which supports 3 UEs, and 5 MUEs using 5 resources.
All users are randomly located inside the coverage of an MBS
which has a radius of r1 = 1000 m, whereas the coverage dis-
tance of each small cell is r2 = 100 m. The bandwidth of each
resource W r is set equal to 1 and the weighting parameter β is
set to a normalized value of 1, whereas the background noise
power is assumed to be −90 dBm. The channel power gain
is modeled as grj,k = 10(−L(dj,k))/10, where L(dj,k) represents
the path loss and dj,k is the distance between BS j and user
k. We assume that L(dM,k) = 16.62 + 37.6 log10(dM,k) for
the channel gain from the MBS to UE k and L(dj,k) = 37 +
32 log10(dj,k) for the channel gain from SBS j to UE k. The
SBSs transmit with varying power over simulation runs ranging
from 15 dBm to 23 dBm. For comparison purposes, we compare
the proposed algorithms with a centralized greedy scheme that
sequentially allocates resources to users in each SBS until
the interference constraint is violated. All results are obtained
by averaging over a large number of independent simulation
runs, each of which realizes random locations of base stations,
users, and channel power gains. Results corresponding to the
optimization-based, matching-based, and greedy algorithms are
denoted as “O-DRA”, “M-DRA”, and “Greedy”, respectively.

In Figs. 2 and 3, we compare the sum rate of SBSs
achieved by different schemes for two different interference
thresholds Irmax = −60 and −100 dBm. It can be observed
that both proposed algorithms and greedy algorithm result in
indistinguishable performance when Irmax = −60 dBm. How-
ever, for decreased macro-tier interference threshold (Irmax =
−100 dBm), lower sum rate of the SBSs can be achieved since
the interference protection constraint becomes stricter. More-
over, the matching approach outperforms the optimization-based
approach in terms of the sum rate at this lower interference
protection threshold. This is because the optimization approach
splits the interference budget Irmax uniformly among all SBSs
and does not coordinate with the macro-tier. Moreover, each
SBS may prevent its UEs from using resource r if the uniformly
assigned interference limit is violated. On the other hand, in the
matching-based approach, the controller performs coordination
between the network tiers and, thus, it only rejects the least
preferred SBS-UE pair from the set of potential SBS-UE pairs.

Fig. 4 compares the average number of iterations required
by both M-DRA and O-DRA versus the number of users (i.e.,
network size) as Irmax = −80 dBm. We can see that, as the
number of users increases, the average number of iterations
also increases. Moreover, M-DRA has a reasonable convergence
time that does not exceed an average of 11 iterations for
all network sizes with 5 resources. Moreover, for O-DRA,
the maximum number of iterations is smaller than 7 for all
network sizes. This fast convergence time can be achieved due
to a completely distributed design of O-DRA with no message
passing.

In Fig. 5, the average sum rate of all UEs versus the number

of UEs is shown for the proposed and greedy algorithms as
Irmax = −80 dBm. Moreover, we use the upper bound (UB) of
problem P1 which is obtained by relaxing the binary indicator
variable so that it can take any value in the range [0, 1]
as a benchmark here. It can be inferred that the matching-
based, optimization-based and Greedy approaches achieve up
to 96.8%, 82.6%, and 80.2% of the average sum rate obtained
by the UB, respectively for a network with 20 UEs. Thus, it
is clear that the matching-based approach is close to optimal.
Furthermore, it can be observed that the sum rate increases
with more UEs, which, however, saturates as the number of
UEs becomes sufficiently large. This is because of the limited
number of resources at each SBS (r = 5). Additionally,
the optimization-based approach achieves a performance ben-
efit up to 4% compared to the greedy approach while the
matching-based approach achieves 17% and 21% higher sum
rate compared to the optimization-based and greedy approaches,
respectively for a network with 20 UEs.

VI. CONCLUSION

In this paper, we have proposed two resource allocation
algorithms for the two-tier heterogeneous network, namely the
optimization-based and matching-based algorithms. Distributed
implementation of these algorithms have also been discussed
in details. Numerical studies have shown that the matching-
based algorithm outperforms the optimization-based algorithm
especially in the low macro-tier interference limit. However, the
performance of both algorithms is almost indistinguishable as
the macro-tier interference limit becomes sufficiently large.
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