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Abstract—Workload consolidation is an efficient approach
to reduce the power consumption of datacenters, meanwhile
load balancing can reduce the datacenter’s user delay. Despite
complexities of a) the coupling between consolidation and load
balancing methods for server allocation, and b) the heterogeneity
of server configurations, we address the joint consolidation and
service-aware load balancing problem to minimize the operation
cost of datacenters. We first formulate the joint optimization
problem, which is NP-hard. We then solve this problem using the
Gibbs sampling method. Further, to improve the computation of
our approach, we propose the JCL algorithm that combines Gibbs
sampling and the ADMM method for parallel and distributed
calculations. Simulation results also validate that our method not
only reduces the power consumption and delay cost, but also
balances the workload in heterogeneous servers.
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I. INTRODUCTION

Consolidation is one of the crucial resource management
techniques that helps reduce the operational cost of data-
centers. Several consolidation techniques [1], [2] have been
proposed to alleviate the critical problems in datacenters and
cloud providers such as high energy costs and low server uti-
lization. Consolidation paradigm is considered as a method to
dynamically control the number of active servers by liberating
spare servers in order to reduce the power consumption [3].
For example, in Fig.1a, the virtual machine (VM) workload is
compacted into a small number servers, and redundant servers
are released. However, existing consolidation methods suffer
delay cost due to servers’ high utilization [1], [2], [3].

On the other hand, load balancing is necessary to guarantee
the quality of services (QoS) in cloud providers. Based on the
demand from users, this policy distributes the requests evenly
to servers, as depicted in the example of Fig. 1b. Even though
load balancing mitigates the overloaded problem to reduce the
delay cost, it has no impact on the energy efficiency of the
datacenter [4].

The disadvantages of either using only a consolidation or
load balancing policy can be alleviated by designing joint
consolidation and load balancing features that complement
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Fig. 1: Illustrating the need for joint consolidation and load
balancing. a) Good consolidation, bad load balancing; b) Good
load balancing, bad consolidation; c) Joint consolidation and
uniform load balancing; d) Joint consolidation and service-
aware load balancing.

TABLE I: Example of the operation cost of the datacenter
under different management policies.

EI = 200 EP = 400 λs = 40
Good consolidation, bad load balancing

Server 1 Server 2 Server 3 Total operation cost
µ1 = 6 µ2 = 5 µ3 = 4 (power and delay cost)

Utilization 98% 4.2% Off
Power cost 397 284 0 980
Delay cost 295 4 0
Good load balancing, bad consolidation
Utilization 44% 53% 67%
Power cost 289 307 333 949
Delay cost 4 6 10
Joint consolidation and uniform load balancing
Utilization 67% 80% Off
Power cost 333 360 0 723
Delay cost 10 20 0
Joint consolidation and service-aware load balancing
Utilization 83% 60% Off
Power cost 367 320 0 720
Delay cost 25 8 0

each other. In the example in Table I and Fig.1, using a joint
consolidation and load balancing method not only significantly
reduces the total power consumption, but also mitigates the
delay cost to all servers. Especially, the joint consolidation
and uniform load balancing in Fig. 1c, where the workload is
distributed evenly to all heterogeneous servers with different
service rates, is worse than the joint consolidation and service-
aware load balancing in Fig. 1d, where the workload is dis-
tributed proportionally with respect to heterogeneous servers
with different service rates. This example calculates the total
operation cost based on the delay cost of an M/GI/1 queueing
model [5] and the power consumption model of a datacenter
[6], which are elaborated in (2) and (3), respectively.

The example illustrates a potential optimization design of
the coupling between load balancing and consolidation in order
to reduce the power consumption and the delay cost of datacen-
ters. Especially, considering a datacenter with heterogeneous
servers and various arrival rates of workload in different time
periods, the design of a joint consolidation and load balancing
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Fig. 2: The VM allocation in the datacenter.

mechanism that can properly dispatch the workload to a
carefully controlled number of active heterogeneous servers
is a critical challenge.

To overcome these problems, we first formulate a joint
consolidation and service-aware load balancing (JCL) problem
as a combinatorial optimization problem, which is NP-hard.
Then, we propose the JCL algorithm based on Gibbs sampling
method in order to solve the JCL optimization problem.
Combining the advantages of the Gibbs sampling method
and the alternating direction method of multipliers (ADMM)
method, we decouple the original problem into sub-problems
and propose a parallel and distributed algorithm that can
eliminate the computation burden at the controller to achieve
an optimal solution.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. The VM workload model

We assume that time is discrete periods and we study the
system for one specific period. We consider a cloud provider
running cloud services on a set of M servers and a subset of
active servers Ma. The datacenter deploys a front-end server
to receive user requests, called a dispatcher, as shown in Fig. 2.
In a specific scheduling period, the total amount of incoming
workload at the dispatcher is λs. The amount of workload
distributed from the dispatcher to server i is λi, satisfying the
following load balance constraint:∑

i∈Ma

λi = λs,∀λi ≥ 0. (1)

Further, physical server i, depending on the configuration
(such as CPU, memory, network bandwidth, etc.), can have
ki slots that paralelly serve VMs in a round-robin manner
(such as processor sharing). Therefore, assuming that the
workload arrivals are Poisson, each server is modelled as
M/GI/1 Processsor Sharing queue [5] with a service rate µi
to serve VMs in one slot. In different time periods, ki and µi
can be varying, but kiµi, the capacity of server i, is fixed. We
can consider ki as the number of virtual servers of queueing
system inside the physical server i. The utility formula is as
follows Ui = λi

kiµi
[5].

B. The datacenter cost model
As mentioned above, we focus on reducing the total oper-

ation cost and balancing the workload among servers. There-
fore, in this paper, we tackle two important decisions for
the datacenter: (i) determining a subset Ma that satisfies the
amount of workload λs, and (ii) assigning the amount of work-
load λi to server i,∀i ∈Ma. These issues can be modeled as
the operating costs incurred by a) power consumption cost of
the active set Ma and b) the delay costs in the datacenter.

Power consumption cost. The power consumption of the
processing servers depends on the number of active servers
and the utility of each server [6] as follows:

α
∑
i∈Ma

(EIi + (EPi − EIi )Ui), (2)

where α is the price that converts the power to a monetary
term, EIi is the idle server power, and EPi is the fully utilized
server power of server i.

Delay cost. After identifying Ma, the controller also ac-
counts for delay cost, which was not considered in many
existing works [1], [2], [3]. The delay cost is modeled as
the M/GI/1 queueing [5]. The total delay cost of |Ma| active
servers is as follows:

θ ·
∑
i∈Ma

λi

µi − λi

ki

, (3)

where θ is the price that translates the delay to a monetary
term.

Combining the two cost models above gives the following
total operation cost C(λi,Ma) of the datacenter:

C(λi,Ma) =
∑
i∈Ma

α(EIi + (EPi − EIi )Ui) +
θλi

µi − λi

ki

. (4)

In our work, the term “service-aware” is to emphasize that
we appropriately distribute VMs to active servers based on the
service rates in the heterogeneous servers.

Note that: the values of α and θ parameters are the mon-
etary terms that are used to convert different units of power
consumption cost and delay cost to calculate the total cost.

C. The Joint Consolidation and service-aware Load balancing
problem (JCL)

Given the cost models above, we consider the joint problem
to choose the routing policy λi and the subset active servers
Ma in the datacenter. This is captured by the following
optimization problem, named JCL problem:

minimize
λi,Ma

C(λi,Ma) (5a)

subject to
∑
i∈Ma

λi = λs,∀λi ≥ 0. (5b)

The JCL problem is a combinatorial optimization problem,
which is NP-hard in general. We note that the JCL problem can
be reduced to a simpler problem of VM consolidation without
load balancing, which is shown to be a NP-hard bin packing
problem [7].

III. JOINT CONSOLIDATION AND SERVICE-AWARE LOAD
BALANCING

A. JCL: A Gibbs-sampling based algorithm
Gibbs sampling is a stochastic optimization method that

can achieve the global optimal solution by probabilistically
transitioning among possible states in the solution space [8].
The procedure of the JCL algorithm is as follows.
• Calculate the current state. At first, all servers are

ordered based on the service rate µi and the capacity ki
(µ1k1 ≥ µ2k2 ≥ ... ≥ µ|M|k|M|). Then, the controller
calculates the optimal value C∗ of the JCL problem
with the current subset M∗a and λ∗i . In the initialization
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step, the controller randomly chooses the subset of active
servers M∗a =M′a that satisfies the constraint:

λs ≤
∑
i∈Ma

µiki, (6)

and a feasible λ∗i (i.e., line 1).
• Calculate the new state. To move on the next state, the

JCL algorithm randomly chooses the new subset M′a,
satisfying (6). Then, it solves the JCL problem to obtain
the new λ′i and optimal value C ′ (i.e., line 2).

• Move to the new state with probability p. Based on
the transition state of the Gibbs-sampling method, JCL
moves to the new state with probability p (i.e., lines
3, 4). The parameter δ > 0, referred to as the tunable
smoothing parameter, is used to control exploration
versus exploitation (i.e., the degree of randomness). As δ
increases, the JCL algorithm becomes more greedy and
chooses a new solution with a greater probability if it is
better than the current solution (i.e., C∗ ≤ C ′) [8].

• Keep the current state with probability 1− p. If the
new state gives a worse optimal value than the current
C∗, the controller will keep the current state (line 4).

• Convergence. The transition from one active server set
combination to another depends only on the current state
and is irrelevant to previous states. Thus, it converges to
a steady state (i.e., obtaining the minimum value in JCL)
after a finite number of transitions.
As δ →∞, the algorithm JCL converges to the globally
optimal solution with a probability of 1. However, as
δ becomes large, JCL is more greedy and takes more
iterations to converge [8].

Algorithm 1: Joint Consolidation and service-aware Load
balancing algorithm (JCL)

1. Initialization: Order servers, randomly choose a subset
of active servers M′a based on (6), and set M∗a ←M′a.
Choose a feasible λ∗i to compute the optimal value C∗ of
the JCL problem.
2. Obtain λ′i and the corresponding optimal value
C ′ = C(λ′i,M′a) by solving the following sub-problem:

minimize C(λi,M′a)
subject to

∑
i∈M′

a

λi = λs,

λi ≥ 0,∀i ∈M′a.

(7)

3. Compute the transition probability [8]

p =
exp(δC ′)

exp(δC ′) + exp(δC∗)
. (8)

4. With probability p, the controller sets λ∗i ← λ′i,
M∗a ←M′a, and C∗ ← C ′. With probability 1− p, the
controller keeps the current state.
5. Choose a new active set M′a that satisfies (6).
6. Return to Step 2 until the stopping criteria is met.

Based on the chosen active set Ma, the controller turns off
all servers not in this set. If one server is removed from the
active set, it will not receive the request from the dispatcher
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Fig. 3: Allocation scheme of
the JCL algorithm.
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Fig. 4: Convergence of the
JCL algorithm.

(i.e., λi = 0,∀i /∈ M∗a) and will be switched off when all
VMs release resources [1], [2] (or the controller can use the
live migration technique to return all running VMs to the
dispatcher).

The computational cost of JCL algorithm basically follows
the complexity of the Gibbs sampling method which depends
on the smooth parameter δ, since each iteration the JCL
algorithm solves the subproblem (7) by a distributed method
ADMM.

B. ADMM-based for sub-problem (7)
With the heterogeneous servers in the datacenters, the com-

putation of sub-problem (7) in Step 2 of the JCL algorithm is a
burden to the controller. To tackle this problem, we parallelize
and decentralize the computation using ADMM method [9].
The well-known distributed method can be applied to solve
the optimization problem. It alternatively optimizes part of the
objective with one block of variables in order to reach the
optimum with fast convergence.

In the JCL algorithm, when an active setM′a is determined
in each iteration, the sub-problem (7) in Step 2 can be
reformulated as follows:

minimize
λi

∑
i∈M′

a

(α
λi

µi − λi

ki

+ θaiλi)

subject to
∑
i∈M′

a

λi = λs,

λi ≥ 0,∀i ∈M′a,

(9)

where ai =
EP

i −E
I
i

kiµi
.

However, we cannot apply ADMM directly to problem (9).
Therefore, we introduce a set of auxiliary variables yi = µi−
λi

ki
; replace fi(yi) =

α(µiki−yiki)
yi

, gi(λi) = θaiλi,∀i ∈ Ma;
and reformulate problem (9) as follows:

min.
yi,λi

∑
i∈M′

a

fi(yi) + gi(λi)

s.t.
∑
i∈M′

a

λi = λs,

yi = µi − λi/ki ≥ 0,∀i,
λi ≥ 0,∀i ∈M′a.

(10)

The augmented Lagrangian of the above problem (10)
can be formed by introducing an extra L2 norm term
‖yi − ui + λi/ki‖22 to the objective:

Lp =
∑
i∈M′

a

fi(yi) + gi(λi) + γi(yi − ui + λi/ki)

+ ρ/2(yi − ui + λi/ki)
2.

(11)

The main operations of ADMM for problem (10) are as
follows:
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(a) Delay cost
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(b) Power consumption cost
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Fig. 5: Comparison between only consolidation (CO), joint consolidation with uniform load balancing (JCL-U), and joint
consolidation with service-aware load balancing (JCL-S).

y-minimization: Each iteration t + 1, the y-minimization
step involves solving the following problem:

min.
yi

∑
i∈M′

a

fi(yi) + γtiyi + ρ/2(y2i − 2yiµi + 2yiλ
t
i/ki)

s.t. yi ≥ 0,∀i.
(12)

λ-minimization: Simultaneously, the datacenter can solve
the sub-problem to obtain λi based on (11):

min.
λi

∑
i∈M′

a

gi(λi) + γtiy
t+1
i + 2yt+1

i λi/ki

+ ρ/2(λ2i /k
2
i + 2yt+1

i λi/ki − 2µiλi/ki)

s.t.
∑
i∈M′

a

λi = λs,

λi ≥ 0,∀i ∈M′a.

(13)

In a practical environment, the controller can implement
JCL algorithm using |M′a| threads to solve simultaneously the
problem (12). Each thread obtains yt+1

i and broadcasts it to
the controllers. Similarly, we use the parallel computation in
the λ-minimization problem (13) to obtain λt+1

i .
Dual update: During each iteration, the controller updates

the dual variable γ as follows:
γt+1
i = γti + ρ(yt+1

i − µi + λt+1
i /ki). (14)

IV. NUMERICAL RESULTS

Settings: We use log files from web servers in the private
cloud system, traced from 10 servers and 50 VMs, to evaluate
the efficiency of our model.Based on the log files, we set and
order the capacities (kiµi) of servers in range from 15 to 30.
In terms of the monetary term weights, both α and θ are set
to 0.01. We also set the number of slots of each server ki = 5.
To measure the power consumption, we assume EIi = 200W,
EPi = 400W. In this work, we consider the interval duration
that can adapt to a practical settings of typical datacenter: e.g.,
30 minutes to hours [2].

Results: We evaluate the performance of the proposed JCL
algorithm with arrival rates from 50 to 150. Fig. 3 presents
the distribution of VM requests and the consolidation ability
of our method (when the arrival rate increases, the number of
active servers also increases and vice versa). Since the JCL
algorithm chooses the number of active servers to serve the
current workload, all servers not in the active server set can
be switched off to reduce power consumption.

In addition, we evaluate the convergence of the JCL algo-
rithm using 50 servers with uniform service rates µi in the
range [3, 6]. Fig. 4 plots the convergence of the objective values

with different δ values, which shows to match the property of
the Gibbs-sampling method (with a larger δ, the convergence
of JCL algorithm is faster).

We further demonstrate the efficiency of the proposed JCL
algorithm in optimizing the power consumption and the delay
cost in the datacenter. Using only the consolidation approach,
Fig. 5a shows the highest delay cost. The joint consolidation
and uniform load balancing can obtain the minimum delay
cost, but it suffers the highest power consumption as shown in
Fig. 5b. Balancing between the delay cost and the power con-
sumption, our method results in the minimum total operation
cost, as depicted in Fig. 5c.

V. CONCLUSION

In this paper, we propose the joint consolidation and service-
aware load balancing mechanism for datacenters. We formulate
the coupling consolidation and load balancing problem in a
datacenter and apply the Gibbs sampling and the ADMM
method to decompose the prior problem. We then present
the JCL algorithm to adjust the active server set for reducing
power consumption and to obtain the optimal distribution of
VMs to active servers. Further, our algorithm can obtain the
fast convergence using the parallel computation method. The
analysis and simulation results show that our proposed system
can be applied to the scheduling function of datacenters.
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