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Abstract—Although network function virtualization (NFV) is a promising approach for providing elastic network functions, it faces
several challenges in terms of adaptation to diverse network appliances and reduction of the capital and operational expenses of the
service providers. In particular, to deploy service chains, providers must consider different objectives, such as minimizing the network
latency or the operational cost, which are coupled objectives that have traditionally been addressed separately. In this paper, the
problem of virtual network function (vNF) placement for service chains is studied for the purpose of energy and traffic-aware cost
minimization. This problem is formulated as an optimization problem named the joint operational and network traffic cost (OPNET)
problem. First, a sampling-based Markov approximation (MA) approach is proposed to solve the combinatorial NP-hard problem,
OPNET. Even though the MA approach can yield a near-optimal solution, it requires a long convergence time that can hinder its
practical deployment. To overcome this issue, a novel approach that combines the MA with matching theory, named as SAMA, is
proposed to find an efficient solution for the original problem OPNET. Simulation results show that the proposed framework can reduce
the total incurred cost by up to 19% compared to the existing non-coordinated approach.
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1 INTRODUCTION

Network function virtualization (NFV), an innovative
network architecture paradigm, has emerged as a promising
network architecture. NFV uses standard IT virtualization
techniques to consolidate many network equipment types
onto industry standard high volume servers, switches, and
storages [1]. NFV is based on the concept of virtual network
functions (vNFs) [1], an abstract building block whose goal
is to process the network traffic to accomplish a specific
task, such as a firewall or a load-balancer. Traditionally,
these network functions are implemented on dedicated net-
work devices, which are typically known as middleboxes.
Although such middleboxes are able to handle heavy traffic
loads, they are expensive and inflexible to implement. NFV
is seen as a solution that can replace dedicated hardware
platforms with software implementations in a virtualized
environment. Hence, multiple and heterogeneous vNFs can
be hosted on general-purpose CPUs or virtual machines
(VMs) for various purposes, such as rapid service inno-
vation, improved operational efficiencies, reducing power
usage, providing standard and open interfaces, greater flex-
ibility, and improved capital efficiencies.

Another benefit of using NFV is the simplicity in the
implementation of heterogeneous network services by ex-
ploiting the important concept of service chaining [2], in
which multiple vNFs are used in sequence to deliver a
service. Each service chain (SC) includes an ordered list of
vNFs (e.g., firewalls or network address translations) that
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Fig. 1: Example of vNF placement with different policies.

are “stitched” together in the network. Based on virtualiza-
tion, the software-based approach of NFV enables a much
higher degree of automation, such as service deployment,
on-demand resource allocation, failure detection and on-
time recovery, and software upgrades [3]. vNFs and logical
links between them can be easily embedded and shared on
physical resources.
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However, an effective deployment of NFVs requires
meeting several key challenges. In particular, to deploy
heterogeneous network functions for SCs, the providers
face several tradeoffs between different objectives, such as
minimizing the latency of the network and minimizing the
number of active nodes in the network. These objectives
are conflicting since minimizing the number of active nodes
in the consolidation policy [4] can increase the aggregation
traffic on the physical links and nodes that leads to ineffi-
ciencies for the network latency objective [5]. Meanwhile,
optimizing the network latency increases the cost incurred
in the system due to spending more resources to deploy
vNFs.

For instance in the consolidation policy, the vNF function
placement is needed to reduce the operational cost, which
includes license fees, redundant resources, or power con-
sumption. By using the consolidation policy in middleboxes,
the resource provisioning cost can be reduced from 1.8 to 2.5
times, as shown in [4]. Another efficiency implementation
of consolidation policy is shown in the Oracle datacen-
ter [6], where they can increase the chiller efficiency by
30%, remove lead and chemical waste, and reduce the free
cooling per year by more than one-third. However, when
formalizing a request for chaining several vNFs together, the
network providers cannot ignore the possible dependencies
among them. Relying only on the consolidation of resource
usage may cause congestion in the physical network since
minimizing the number of active nodes increases the addi-
tional used bandwidth of all embedded SCs on the physical
links [7]. Moreover, when deploying vNFs on a cloud, the
consolidation policy (e.g., used in OpenStack clouds [8]) also
faces to the significant migration cost including migration
process costs, reconfiguration systems, or network conges-
tion overhead.

On the other hand, only a handful of solutions exists
for the service providers that focus on the network traffic
between vNFs, such as in [5], [7], and [9]. In particular, all
network flows of SCs must be monitored and the obvious
choice is to deploy vNFs on physical nodes with minimum
network traffic cost [7]. In fact, the relationships between vNFs
of SCs are complicated. Some vNFs of different SCs can be
shared in implementation (e.g., anti-virus functions), while
other types of vNFs cannot be shared (e.g., a firewall) [7].
Furthermore, some vNFs can modify or change the traffic
between vNFs, e.g., a firewall can drop incoming packets
that violate the security policies, or a video transcoding can
change the packet sizes [10]. To simplify the complexity
of SCs, here, we consider unshared vNFs, where a shared
vNF can be represented by replicated vNFs with the same
vNF instances implemented on VMs. This consideration
is possible in the virtualization environment, where the
shared vNF often requires a double resource on the VM
[11]. Further, even though implementing vNFs on the vir-
tualization environment of cloud datacenters facilitates vNF
implementation, a design that only considers to optimize
the network traffic cost, can lead to the inefficient and
fragmented resource usage (e.g., CPU, memory), which can,
in turn, lead to important resource allocation challenges
within the datacenters [12].

We now illustrate the benefit of vNF placement in a
joint consideration of both mentioned policies by showing

a simple example. Fig. 1 presents three possible policies of
vNF placements by deploying SCs that include lists of vNFs.
For ease of exposition, we give the example with only one
resource type (vCPU) of vNFs and physical nodes. Assume
that the cost to operate one physical node (in terms of
power) is $3/hour and that network delay cost is $0.5/link.
Hence, the total cost to implement all SCs is as follows:
a) Policy 1: Based on consolidation and no network traffic-

aware consideration, there is one idle node, while the
system must serve four interconnections between vNFs.
Thus, the service provider will be charged $11 to host all
vNFs.

b) Policy 2: Based on network traffic policy and no consol-
idation, the number of interconnections can be reduced,
however, all nodes have to turn-on. Thus, the service
provider will be charged $13 as the highest total cost
compared to other cases.

c) Policy 3: Under both operational cost and network traffic
cost consideration, the service provider will be charged
$10.5 as the smallest cost to host all vNFs, since the
number of interconnections and the number of active
nodes are reduced.
The example shows that jointly optimizing these poli-

cies, which are traditionally studied separately, increases the
efficiency of vNF placement. Moreover, the necessity of the
joint operational and network traffic cost is not well-studied
in the NFV literature [7], [13]. Therefore, in this paper, we
devise a traffic-aware and energy-efficient vNF placement
for service chaining that optimizes both the operational and
network traffic cost, considering the heterogeneous physical
nodes and workload. In summary, our key contributions are
as follows:

• We first formulate the joint operational and net-
work traffic cost as an optimization problem (named
OPNET) whose goal is to minimize the total cost of
the network.

• To derive the solution for OPNET, we first pro-
pose an algorithm based on the Markov approxima-
tion (MA) technique to solve the combinatorial vNF
placement problem OPNET. However, this method
is inefficient to be used directly because it is then
shown to exhibit a long convergence time to find the
near-optimal solution. This is due to the large state
space of OPNET, which depends on the combination
between chosen subsets of nodes and vNF placement
schemes. To overcome this challenge, we propose a
novel framework for vNF placement based on the
combination of the MA technique and the matching
approach, named the SAMA algorithm. In SAMA, we
solve OPNET by iteratively executing two steps i)
finding the subset of nodes to deploy vNFs and ii)
placing vNFs to minimize the total cost incurred in
the system. This approach reduces the state space of
feasible solutions that directly impacts to the conver-
gence time.

• In addition, the vNF placement in the second step
of SAMA can reduce the computational cost by for-
mulated as a many-to-one matching game, where
vNFs and nodes are seen the players of the pro-
posed matching game. To solve the vNF many-to-one
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matching game, we propose two approaches, includ-
ing the centralized solution and the distributed so-
lution. The centralized solution can be implemented
at the SDN controller of NFV architecture. In con-
trast, the distributed approach can be used in the
distributed system, where active nodes are equipped
monitoring and scheduling functions to handle vNF
placement for themselves.

• Finally, we compare our approach with state-of-the-
art methods in several case studies. Simulation re-
sults show that SAMA can effectively optimize the
total cost in a specific time slot and over a long-term
consideration. Moreover, the result shows that SAMA
converges more quickly than the first approach using
only MA. Furthermore, compared to existing tech-
niques, SAMA is shown to be superior in terms of
reducing heterogeneous instances of vNFs and node
configurations.

The rest of the paper is organized as follows. Section 2
discusses about the current works, related to our proposed
method. Section 3 presents the system model and problem
statement. To solve the problem, we discuss the solution
applying MA method in Section 4. In Section 5, we design
a heuristic algorithm that combines the MA method and
the matching game to solve the optimization OPNET. The
matching game approach for vNF placement is represented
in Section 6. We then simulate and evaluate our work in the
Section 7. Finally, we present conclusion in Section 8.

2 RELATED WORK

Recently, NFV has received significant attention as a new
way to design, deploy, and manage network services. Some
previous works [7], [9] and [14] considered vNF placement
as extensions of virtual network embedding (VNE) prob-
lems [15]. Chained vNFs can be modeled as graphs to be
embedded into a substrate network, where each connec-
tion between vNFs can be mapped to a physical link and
multiple vNFs can be mapped to the same physical node.
However, the vNF placement for service chaining and VNE
have different goals and constraints [14].

Beginning with the middlebox concept [16], NFV ar-
chitecture aims to reduce the operational cost (CapEx and
OpEx [17]) by using consolidation methods [4], [18]. Espe-
cially, NFV can be implemented on the cloud/datacenter,
where the consolidation policy becomes an enterprise
method [6], [8]. Since computing resources, such as vCPU,
memory and storage, are explicit, they are easily monitored,
managed and consolidated by resource management func-
tions in a cloud. Therefore, the consolidation policies in
existing works [4], [7], [8] often ignore the interconnection
between vNFs in a SC. In terms of vNF placement on
cloud/datacenters, other studies [8], [19], and [20] consid-
ered the vNF placement with the goal of reducing the num-
ber of active nodes, as is typically done for VM placement.

Another important paradigm of vNF placement is net-
work traffic-aware placement in which many studies have
proposed mechanisms based on the NFV architecture or the
SDN architecture to optimize the network traffic cost, such
as in [9], [14], [21], and [22]. The authors in [9] and [21]
focused on network-aware vNF placement, which focuses

Workload and nodes
M A set of active nodes, indexed by m = 1, ..,M .
C A set of SCs, indexed by c = 1, ..., C.
N A set of vNFs, indexed by n = 1, ..., N .
P A set of resource types, indexed by p = 1, ..., P .
rpn, r

p
m Amount of resource type p of vNF n and node m, respectively.

rn, rm Resource vector of vNF n and node m, respectively.
ac
nn′ The traffic rate requirement between vNF n and n′.
Dmm′ The network latency between node m to node m′.
M ′ The number of active nodes in previous time slot.
Qm The active power of node m.
Bmm′ The traffic rate capacity of the physical link mm′.

Optimization
Xc

nm A binary decision for placing vNF n of SC c on physical nodes m.
E(M) The energy cost of active node setM.
W (M) The wear-and-tear cost of active node setM.
G(X) The network traffic cost with allocation scheme X .
C(M,X) The objective function of total incurred cost.
f A feasible configuration.
F A set of all feasible configuration.
Cf System objective under configuration f .
pf A probability of choosing configuration f .
δ A positive constant for log-sum-exp approximation.
q(f→f ′) Transition rate from state of configuration f to state of configuration f ′.
α The price that converts the power to a monetary term.
β The price that converts the wear-and-tear cost to a monetary term.
σ The weighted parameter.

Matching theory
µ A matching scheme that allocates vNFs to nodes.
ωp Weight of resource type p.
n �m n′ Agent m prefers agent n to agent n′ in matching.
P (n) The preference list of vNF n.
P (m) The preference list of node m.

TABLE 1: Summary of key notations.

solely on the network traffic cost, while neglecting the con-
solidation policy. Other works such as [14] and [22] have no
explicit solutions to solve the formulated NP-hard problems
for vNF placement. The authors in [7] and [21] analyzed in
detail the network traffic and its impact on vNF placement;
however they did not clarify them in the objective function.

In most of these existing works, the coupling between
different vNF placement objectives has not been addressed.
A few existing works on the NFV architecture [7], [13]
considered the vNF placement problem with multiple ob-
jectives, such as the network resource cost and the license
cost. However, they do not provide any effective solution to
optimize such coupled objectives.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we quantitatively analyze the cost model of
vNF placement in NFV architecture. A summary of the used
notations is found in Table 1.

3.1 Problem formulation
In the NFV architecture, the controller receives demand
workloads and makes a decision for vNF allocation in each
time slot [7], [13]. However, depending on network service
types, the average demand workload is different during a
time slot (e.g., 1 hour [23], [24]). We assume that time is
slotted and we study the system for one time period. The
assumption implies that non of configuration parameters
(e.g., demand workloads, network topology, physical node
configurations, etc.) in the system will change within one
time slot, and the proposed algorithm must converge during
this slot. Then, the operator can deploy vNFs on physical
nodes and implement further vNF-specific configurations in
the remaining of the time slot (e.g., setup network policies
for the firewall instance) [25]. This assumption is used in
several works, such as in [7], [9], [13], [15], and [26].

Virtual network functions and service chains. Consider
a service provider having Mmax heterogeneous physical
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Service Chain Chained vNFs Traffic rate requirement (a)
Web Service NAT-FW-WOC-IDPS 100 kbps

VoIP NAT-FW-TM-FW-NAT 64 kbps
Online Gaming NAT-FW-VOC-WOC-IDPS 50 kbps

TABLE 2: Network traffic requirements.
NAT: Network Address Translator, FW: Firewall, TM: Traffic Monitor,

WOC: WAN Optimization Controller, IDPS: Intrusion Detection
Prevention System, VOC: Video Optimization Controller

Instance Type Memory CPU Throughput
Firewall (small) 4 GB 2 vCPU 100 Mbps
Firewall (standard) 4 GB 8 vCPU 200 Mbps
Firewall (large) 4 GB 8 vCPU 400 Mbps
IDS 4 GB 6.5 vCPU 80 Mpbs
IPSec (standard) 4 GB 4 vCPU 268 Mpbs
IPSec (large) 4 GB 8 vCPU 580 Mpbs
WAN-opt (standard) 2 GB 2 vCPU 10 Mpbs
WAN-opt (large) 2 GB 4 vCPU 50 Mpbs

TABLE 3: vNF instances.

nodes. In each time slot, this provider runs services on a
subset M of active nodes to serve a set C of SCs. Each SC
c ∈ C includes an ordered list of vNFs. We denote by N the
set of vNFs in the system and each vNF n ∈ N belongs to
only one SC c. Further, to implement vNFs for an SC, we
denote the traffic rate requirement between vNF n and n′

of SC c by acnn′ to capture the interconnection in an SC. For
example, to implement a small instance of the firewall in
front of a WAN optimizers with vSRX [11], the traffic rate
requirement between the firewall and the WAN optimizer is
100 kbps, as shown in Table 2.

Virtual network function placement in multi-resource
node constraints. We next consider a set P of resource
types, such as CPU, memory, and bandwidth. We denote
rpn as the resource requirement of resource type p ∈ P of
vNF n. Furthermore, rpm and rpc represent as the available
resource type p of node m and SC c, respectively. For ease of
notation, we use rc, rn and rm to denote a vector resource
of SC c, vNF n, and node m, respectively.

Let Xc
nm be a binary variable that indicates whether vNF

n of SC c is located on node m (Xc
nm = 1) or not (Xc

nm =
0). We consider a resource constraint that guarantees the
total resource allocation on any node must be less than the
available capacity of that node as follows:∑

c∈C

∑
n∈N

rn
p ·Xc

nm ≤ rpm,∀m ∈M,∀p ∈ P. (1)

Moreover, we assume that each vNF of a given SC c
can be placed on only one active node as captured by the
following constraint:∑

c∈C

∑
m∈M

Xc
nm = 1,∀n ∈ N . (2)

Last but not least, when performing vNF placement, the
total traffic rate of all virtual link nn′ (the links between two
vNFs n and n′) embedded onto the physical link mm′ has
to be less than the capacity of the physical path mm′, as
follows∑
c∈C

∑
n,n′∈N
n 6=n′

acnn′Xc
nmX

c
n′m′ ≤ Bmm′ ,∀m,m′ ∈M,m 6= m′,

(3)
where Bmm′ is the traffic rate capacity of the path between
the two physical nodes m and m′. When implementing
vNFs on VMs of a cloud, the traffic rate capacity Bmm′ can

be measured based on the network topology in the cloud
(e.g., VL2 [27]), where Bmm′ is the aggregation capacity
traffic of all paths from node m to node m′.

These constraints (1), (2) and (3) are traditional con-
straints in vNF placement problem. Based on these con-
straints, we next provide suitable models for the operational
and network traffic costs.

Operational cost. As discussed in [26], turning on all
physical nodes can have negative effects on reducing the
carbon footprint as well as the electric cost in the system.
According to [28], idle servers in data centers may draw up
to 60% of peak power. Therefore, controlling the number
of active nodes in the system is an important challenge for
vNF placement. We formulate the operational cost needed
to serve user demands as the amount of power consumption
of all active nodes, using a linear function α

∑
m∈MQm,

where α is the price that converts the power to a monetary
term, and Qm is the active power of node m.

However, the controller should not frequently turn-
on/off arbitrary nodes since turning nodes into sleep/off
mode and bringing them back to normal operation can lead
to wear-and-tear cost, as shown in [26], [29], [30], and [31],
which is detrimental to the lifetime of physical devices.
Hence, we define a cost function that linearly depends on
the number of nodes that are turned-on/off and a monetary
term β as follows: β|M −M ′|, where M is the number of
active nodes in current time slot that corresponds to the
subset of active node, M ′ is the number of active nodes in
previous time slot, and β is an average monetary weight
(i.e., $/nodes).

The wear-and-tear cost function is often not considered
in the traditional consolidation problem of datacenters [8],
[20], [32], [33] as well as in NFV architecture [4], [18], where
the authors usually optimize the number of active servers or
physical nodes and ignore this cost incurred in the system.
The tradeoff between reducing the amount of active nodes
and mitigating the wear-and-tear cost must be concretely
accounted for during vNF placement.

Therefore, we formulate the operational cost in the sys-
tem as the aggregation cost as follows:

E(M) = β|M −M ′|+
∑

m∈M
αQm. (4)

Traffic cost. In a service chain, an vNF needs to forward
packets to another vNF depending on the virtual connection
between them. These virtual connections are embedded on
the active physical links of nodes. Each active physical link
can have a different hop distance depending on the network
topology in a cloud [27]. Hence, in this work, we formulate
the network traffic cost, which is calculated via the cost to
operate each active physical link based on the hop distance
and the total allocated bandwidth of virtual links embedded
on that physical link. Given the internal traffic that circulates
between vNFs, we measure the network traffic cost based on
the hop distance Dmm′ between the physical nodes m and
m′. The hop distance of the network topology in a cloud
is well-studied in [27], [34]. Hence, the network traffic cost
function can be written as follows:

G(X) =
∑

m,m′∈M
m6=m′

Dmm′

∑
c∈C

∑
n,n′∈N
n 6=n′

acnn′Xc
nmX

c
n′m′ ,

(5)
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where X is the matrix allocation.
The traffic cost is an important objective function in vNF

placement. In fact, given thousands of nodes and vNFs in
practice, an inefficient vNF placement will lead to high over-
head of inter-traffic among vNFs. However, minimizing the
used network bandwidth increases the number of physical
nodes to be deployed, which has negative effects on the ob-
jective of the consolidation policy [7]. Therefore, a dynamic
vNF placement, controlling both operational and network
traffic costs, is a significant issue in NFV architecture.

We now combine the two cost models above using a
weight factor σ ∈ [0, 1] in a system-wide objective function
C(M,X) as follows:

C(M,X) = σE(M) + (1− σ)G(X). (6)

The design parameter σ can be adjusted to achieve any
desired performance/cost tradeoff. For example, a larger σ
will allow the system to emphasize more the optimization
of the operational cost, while a smaller σ stresses network
traffic cost minimization.

Based on the vNF placement constraints and cost mod-
els, we formulate the joint operational and network traffic
problem (OPNET) as follows:

OPNET : min
M,X

C(M,X),

s.t.
∑
c∈C

∑
n∈N

rn
p ·Xc

nm ≤ rpm,∀m ∈M,∀p ∈ P,∑
c∈C

∑
m∈M

Xc
nm = 1,∀n ∈ N ,∑

c∈C

∑
n,n′∈N
n 6=n′

acnn′Xc
nmX

c
n′m′ ≤ Bmm′ ,

∀m,m′ ∈M,m 6= m′,

Xc
nm = {0, 1},∀c ∈ C,∀n ∈ N ,∀m ∈M,

|M| ≤Mmax.
(7)

OPNET aims to find a vNF placement to minimize the
total cost incurred in the system, which is represented in the
objective function as the summation of the operational and
traffic cost. However, the problem above cannot be found
in the polynomial time since it is NP-hard. Among the
many choices of optimization methods, the one we advocate
below, the MA-based approach has an advantage in giving
an approximated solution for the high complexity of the
combinatorial optimization problem.

4 MARKOV APPROXIMATION ALGORITHM FOR
OPNET

4.1 Log-sum-exp Approximation

Let f = {M,X} be a configuration for the joint vNF
consolidation and network traffic-aware placement, and F
be the set of feasible configuration defined by constraints
(1), (2) and (3). Configuration f indicates a specific vNF
mapping scheme on a subset of active nodesM. A change
of any vNF in the allocation scheme will create a new
configuration (or new state in the Markov chain). We show
a simple example of Markov chain with three vNFs and two
nodes in Fig. 2. To deploy two SCs, such as SC1:(vNF 1,

vNF
1

vNF
2

vNF
3

Node 
1

Node 
2

vNF
1

vNF
2

vNF
3

Node 
1

Node 
2

vNF
1

vNF
2

vNF
3

Node 
1

Node 
2

f
1

f
2

f
3

Fig. 2: A simple SC scenario with three vNFs and two physi-
cal nodes. Each state is represented by a specific allocation of
three vNFs onto 2 nodes. From a given configuration f1 with
three vNFs placed on node 1, the transition from f1 to f2
is represented by one changed assignment (vNF 3 changes
from node 1 to node 2). Similarly, the transition from one
configuration to another is represented by one vNF that has
changed its allocation.

vNF 2) and SC2:(NF3), Fig. 2 depicts the transition states
between feasible configurations. For ease of presentation,
we let Cf = C(M,X). Thus, we have minf∈F Cf , which
can be rewritten as follows

min
p>0

∑
f∈F

pfCf , (8a)

s.t.
∑

f∈F
pf = 1, (8b)

where pf is the probability of choosing configuration f (i.e.,
its weight). Following the framework, we apply log-sum-
exponential approximation [35] to the OPNET problem as
follows:

min
p>0

∑
f∈F

pfCf +
1

δ

∑
f∈F

pf log(pf ),

s.t.
∑

f∈F
pf = 1,

(9)

where δ is a large positive constant.
Based on the analysis about the optimization problem (9)

in [35], we obtain the optimal probability distributions p∗ as
follows

p∗f (Cf ) =
exp(−δCf )∑

f ′∈F exp(−δCf ′)
,∀f ∈ F , (10)

and the optimal objective value is

−1

δ
log

∑
f∈F

exp(−δCf )

 ≈ min
f∈F

Cf . (11)

Unfortunately, to calculate (10), it requires complete in-
formation on F , which is difficult to find in practice due
to the large solution space. Thus, we view f as a state of
a time reversible of Markov chain. The key idea to create
an algorithm is to treat p∗f (Cf ) as the stationary distribution
of a time reversible Markov chain. As the Markov chain
converges to its stationary distribution, we approach p∗f (Cf )
as an optimal solution.

4.2 Markov approximation as a solution for the OPNET
problem
Markov chain and transition rate. The next step in the
Markov approximation framework is to design a problem
specific Markov chain, in which states and transmission
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rates between states are defined. Each state (configuration)
f in the Markov chain represents a feasible configuration
with its corresponding stationary distribution p∗f (Cf ) given
in (10), and a set F of states represents all feasible configura-
tions. Since the configurations will be time-shared according
to p∗f when the Markov chain converges, the controller
will operate in the best configurations most of the time
[35]. Therefore, based on (10), the configurations with low
cost will have high probability, and thus, the operator will
use those configurations more often. It was proven in [35]
that for any probability distribution of the product form
pf (Cf ) given in (10), there exists at least one continuous-
time time-reversible ergodic Markov chain whose stationary
distribution is pf (Cf ).

Consider two configurations f, f ′ ∈ F that represent
the states of the time-reversible ergodic Markov chain with
stationary distribution p∗f (Cf ), we then derive the transi-
tion probability between these states as follows. We define
q(f→f ′) and q(f ′→f) the non-negative transition rates from
f → f ′ and f ′ → f , respectively, as shown in Fig. 3. Then,
the particular form of (8b) allows us to restrict our design to
a time-reversible Markov chain [35], which must satisfy the
following balance equations for all f, f ′ ∈ F :

p∗f (Cf )q(f→f ′) = p∗f ′(C ′f )qf ′→f ,

exp(−δCf )q(f→f ′) = exp(−δCf ′)q(f ′→f).
(12)

Let Cf and Cf ′ be the total cost of two state configura-
tions f and f ′, respectively. Based on (12), we have

q(f→f ′) = exp(−τ) · 1

1 + exp [−δ(Cf − Cf ′)]
,

q(f ′→f) = exp(−τ) · 1

1 + exp [−δ(Cf ′ − Cf )]
,

(13)

where τ is a constant [35].
Therefore, we have three cases of transition as follows.

First, if Cf > Cf ′ , then the controller chooses the new
configuration f ′ with q(f→f ′) ≈ 1. Second, if Cf < Cf ′ ,
then the controller keeps the current configuration f with
q(f ′→f) ≈ 1. Finally, if Cf = Cf ′ , then the controller chooses
the current configuration f or the new configuration f ′ with
equal probability.

In particular, the key design challenge for constructing
such a Markov chain is to ensure (i) any two states are
reachable from one to another; and (ii) the balance equation
(12) is satisfied. Therefore, in the implementation, we only
allow links connecting two states that can be reached by per-
forming only one change of vNF in the allocation scheme, as
shown in Fig. 2. Next, we describe the proposed algorithm
based on the MA method.

Markov approximation-based algorithm. The algorithm
starts with an arbitrarily chosen feasible assignment solu-
tion f , and may move to another feasible solution f ′ accord-
ing to the transmission rate q(f→f ′). The convergence of this
mechanism occurs when the Markov chain reaches to the
steady-state distribution p∗f (Cf ). The mechanism proceeds
as follows.

Step 1: Initialize a feasible configuration f0 with the
subset M0 and the assignment X0. Set f0, X0, and M0

to the best configuration f∗, the best vNF assignment and
the best subset of active nodes, respectively.

(f,C
f
) (f,C

f’
)

q
(f’ f)

q
(f f')

(f)

(f’)

q
(f’ f)q

(f f')

NF
NF
vNF

Fig. 3: Transition rates from the configuration f to f ′.

Step 2: Randomly pick a vNF n, then migrate vNF n to a
new configuration f ′, corresponding to a new active setM′
and a new assignment X ′.

Step 3: Calculate Cf ′ and probabilistically choose the
new configuration f ′ according to (13). Set f ′,M′ and X ′

to the best configuration f∗ and the best subset of active
nodes M∗ and the best vNF assignment X∗, respectively.
Otherwise, the current configuration f∗ is kept to the next
iteration.

Step 4: Return to Step 2 until the stopping criteria are
met.

The MA algorithm solves OPNET in a repeated manner
with two phases. The first phase is to find a random feasible
configuration to implement. Then, the second phase is to
compare the current cost with the previously achieved cost.
The controller chooses a configuration, which is owning the
smaller cost base on (13). These phases are repeated until
the underlying Markov chain converges to the stationary
distribution.
4.3 Discussions
Even though the MA framework can find a near-optimal so-
lution of the NP-hard combinatorial optimization problem
as proven in [35], it can exhibit a very slow convergence due
to the exploration of a large number of feasible configura-
tions. Furthermore, the multi-resource node constraints and
the heterogeneous physical nodes and workload consider-
ation further escalates the number of states in the Markov
chain that draws the convergence of the algorithm becoming
more decelerated.

As shown in (9), δ is to used to manage the tradeoff
between exploring solutions and exploiting the current so-
lution. When δ increases, a better solution is kept with a
higher probability, leading to a more aggressive scheme.
However, this leads to a high cost of taking more iterations
to explore the solution space F . Since the system stays on
more exploitation and is stuck in a local optimum for a long
time before successfully exploring other better solutions.

Given a value of δ, we are implicitly solving an approxi-
mated version of the OPNET problem with an entropy term
1
δ

∑
f∈F pf log(pf ). The optimality gap is thus bounded

by 1
δ log|F|, where |F | is the size of the configuration set

F . It emphasizes that the optimality gap will be linearly
increasing when |F| is exponential increasing with input
size for a given δ. Consider a specific case with maximum
K subsets of active nodes such that each subset has enough
resources to embed N vNFs. We illustrate the optimality
gap as follows. For each subset of active nodes, there ex-
ists N ! permutations of vNF assignments corresponding
to the configuration states f . Hence, with a large subset
K , the size of the state space now is N !K . This number
of states significantly affects to the optimality gap. In the
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worst case with Mmax nodes in the system, the state space
becomes N !2M

max
then the gap is 1

δ logN !2M
max

, which is
O(N logN +Mmax)/δ.

This issue can be solved by choosing a large δ to reduce
the optimality gap [35]. However, the overhead of the long
convergence by using a large δ should be carefully consid-
ered. Therefore, we next apply the MA method in a differ-
ent direction, combining it with the matching approach to
reduce the search space and computational complexity.

5 JOINT MARKOV APPROXIMATION AND MATCH-
ING APPROACH FOR OPNET

To address the slow convergence challenge of the MA so-
lution, we next introduce a new way to apply MA that can
reduce the state space, named SAMA.

OPNET couples two variables M and X which, in
turn, results in a large feasible state space as mentioned
before. Based on a sampling-based Markov approximation
framework, we find the optimal subset M of nodes. Si-
multaneously, when transitioning from state f to f ′, the
controller must find an assignment X corresponding to the
chosen subsetM such that the total cost is minimized. Next,
the procedure of SAMA is presented in details.

• Initialize. The controller randomly chooses a subset
M0 of active nodes that has enough resources to
deploy vNFs. Then, setM∗ ←M0.

• Calculate the current state. Based on the chosen subset
M∗, the minimum cost C∗f is obtained correspond-
ing to the configuration f∗ by solving the OPNET
problem.

• Calculate the new state. To move on the next state
f ′, the controller randomly chooses the new subset
M′, satisfying the resource demands. Next, OPNET
is solved to obtain the new assignment X ′ and the
optimal value Cf ′ . Given the chosen subset M′,
OPNET can be transformed into subproblem P1 as
follows.

P1:min
X

C(M′,X) (14)

s.t.
∑
c∈C

∑
n∈N

rpn ·Xc
nm ≤ rmp,∀c ∈ C,

∀m ∈M′,∀p ∈ P, (15)∑
c∈C

∑
m∈M′

Xc
nm = 1,∀n ∈ N , (16)∑

c∈C

∑
n,n′∈N
n 6=n′

acnn′Xc
nmX

c
n′m′ ≤ Bmm′ ,

∀m,m′ ∈M′,m 6= m′, (17)
Xc
nm = {0, 1},∀n ∈ N ,∀m ∈M′. (18)

Subproblem P1 is still NP-hard. Hence, we will use
the framework of matching theory [36] to solve sub-
problem P1 in polynomial time, where P1 can be
cast as a the generalized assignment problem [37],
as formulated in Section 6.

• Choosing the new configuration f ′. Based on the
optimal value Cf ′ , the controller probabilistically
chooses the new configuration f ′ according to the

Algorithm 1: SAMA- A joint Sampling-based Markov
approximation and Matching-theoretic approach.

1. Initialization: Choose randomly a subsetM0 of
active nodes. Then, solve P1 to obtain the optimal
assignment X0 and the corresponding cost Cf0 . Set
f∗ ← f0 and Cf∗ ← Cf0 .

2. Randomly choose a new subset of active nodesM′.
Obtain X ′ and the corresponding optimal value Cf ′

by solving P1.
3. Compute the transition probability q according to
(13).

4. Based on (13), the controller setsM∗ ←M′,
X∗ ←X ′, and C∗ ← C ′ or keeps the current state.

5. Return to Step 2 until the stopping criteria is met.

transition probability (13). Set f ′, M′, and X ′ to
the best configuration f∗ and the best subset of
active nodes M∗ and the best vNF embedding X∗,
respectively. Otherwise, the current configuration f∗

is kept to the next iteration.
• Convergence. Similar to the algorithm in Section 4.2,

SAMA also solves OPNET in a repeated manner
with two phases: choosing randomly the subset of
active nodes and assigning vNFs into nodes. Based
on Step 3 of SAMA, the controller chooses a subset,
which obtains the minimum cost. The algorithm will
stop until reaching the convergence condition (the
underlying Markov chain converges to the stationary
distribution).
Furthermore, given a set M, an optimal vNF as-
signment X can be obtained by solving subproblem
P1. Here, the state space of SAMA is now reduced
from N !2M

max
to 2M

max
in the worst case, which corre-

sponds optimality gap reduces to O(Mmax)/δ.

The advantage of SAMA is to reduce the number of
feasible configurations f . For each subset of active nodes in
the algorithm of Section 4.2, we have to transit between the
permutation of vNFs to find an optimal allocation. Mean-
while, SAMA skips that step by solving directly subproblem
P1.

6 VNF PLACEMENT AS A MANY-TO-ONE MATCH-
ING GAME

For a chosen subsetM of active nodes (in step 2 of SAMA)
that is used to deploy a set C of SCs, the controller has to
solve P1. Subproblem P1 is similar to the bin-packing prob-
lem [38] for which an effective solution can be derived using
the framework of matching theory [36], [37]. In particular,
one vNF is only embedded in one node, while one node
can host many vNFs depending its available configuration.
Based on matching theory [39], vNFs and nodes can be seen
as the two sides of players in a many-to-one matching game
in the subproblem P1. This matching game has been applied
successfully in another area, VM placement in datacenters,
to find the stable allocation, such as in [40] and [41]. There-
fore, we advocate the matching game approach to find the
assignment solution for subproblem P1.
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6.1 Matching concepts

The assignment of vNFs to nodes can be considered as an
outcome of a many-to-one matching.

Definition 1. The outcome of a vNF placement in problem
P1 is a matching µ. Formally, a matching is a function µ :
N ∪M→ 2N∪M satisfying:

• µ(m) ⊆ N such that |µ(m)|p ≤ rpm, ∀m ∈ M,∀p ∈
P , where |µ(m)|p is the amount of aggregation re-
sources of type p of all vNFs that are matched to m.

• µ(n) ⊆ M such that |µ(n)|p = rpm, or |µ(n)|p = 0,
∀n ∈ N ,m ∈ M,∀p ∈ P , where |µ(n)|p is the
amount of resources of type p of node m that is
matched to n (|µ(n)|p = 0 means that vNF n is
unassigned).

• n ∈ µ(m) if and only if µ(n) = m, ∀n ∈ N ,m ∈M.

The definition states that a matching is a many-to-one
relation in the sense that each node is matched to a subset
of vNFs. The objective of any matching problem is to find a
stable and efficient matching. In this game, each player needs
to specify its preferences over the opposite set depending
on its goal in the network.

Service chain’s preference list. Intuitively, vNFs prefer
to be located in the node that has the most amount of
available resources. Also, all vNFs in an SC should be de-
ployed on the same node to reduce the inter-communication
between them [13]. Hence, we consider that all vNFs in an
SC have the same preference list, called the SC’s preference
list. Each SC c ∈ C has a complete, strict, transitive and pref-
erence relation P (c) over the node set M. Here, m �c m′
means that SC c prefers node m to node m′ and if c prefers
to remain unmatched instead of being matched to node m,
i.e., ∅ �c m, then m is said to be unacceptable to c. One
SC includes a list of vNFs that have the same preference as
its SC because all vNFs in such an SC want to be allocated
together in the same node.

Node’s preference list. Similarly, each node has a pref-
erence list over vNFs. This preference list is based on the
consolidation policy in which each node prefers to improve
the resource utilization by deploying more vNFs. It also
implies that the node prefers assignment to unassignment.
We assume that each node m ∈ M has a complete, strict,
transitive preference relation P (m) over the vNF set N .
Further, n �m n′ means that node m prefers vNF n to
vNF n′, and if m prefers to remain unmatched instead of
being matched to vNF n, i.e., ∅ �m n, then n is said to be
unacceptable to m.

Based on [39], in order to address the matching game,
we need to find a stable solution, where there does not exist
any player that is not matched to another, but they prefer to
be partners. In our model, the stable matching implies that
there is no vNF that wants to change its current placement
due to increasing the network traffic cost, while nodes also
do not want to change their assignment due to wasting more
computing resources.

Definition 2. A matching µ is blocked by a pair of agents
(n,m) if there exists a pair (n,m) with n /∈ µ(m) and m /∈
µ(n) such that n �m µ(m) and m �n µ(n). Such a pair is
called a blocking pair in general.

Algorithm 2: Creating a SC’s preference list
Input: A set of active nodesM, the first vertex m0,
and matrix D.

Output: The list of nodes L.
1. Start on the current node m0, then mark m0 as visited:
L← {m0}.

2. Find out the shortest bath connecting current node and
unvisited node ω ∈M based on D.

3. Set current node to ω.
4. Mark ω as visited: L ∪ {ω}.
5. Terminate if all nodes are visited.
6. Go to Step 2.
7. Return L.

Definition 3. An SC c ∈ C, is saturated if all vNFs in SC c
are assigned. Similarly, a node is saturated if all its capacity
is utilized. If node m has available resources, then it will
accept any vNF n that rpm ≥ rpn,∀p ∈ P .

To satisfy the requirement from users, all SCs have to
be embedded into nodes. Therefore, all stable assignments
must not contain any unsaturated SC.

Definition 4. A matching is said to be stable if (i) there is no
blocking pair and (ii) all vNFs are embedded to nodes (or
all SCs are saturated).

The next step is to define the preference lists for the
players.

6.2 Algorithms for creating preference lists

Service chain’s preference list. Based on the definition of
preference list, each SC c aims to find nodes that has enough
available resources and minimum the traffic cost. Hence,
we first find a node that has the best fit resources to the
demand of a SC c based on the norm-based metric applied
in VM placement with multiple resources [19]. The norm-
based metric is calculated as follows

L2 =
∑
p∈P

ωp(r
p
c − rpm)2,∀c ∈ C,∀m ∈M. (19)

The intuition of L2 can be seen as the resource deviation
between node m and SC c. The smaller the value of L2 is,
the more fit the node is for being chosen to deploy c.

Next, we find the subset of nodes with minimum net-
work traffic based on the nearest neighbors algorithm [38]
from the first node. Based on the network matrix D, we
build SC’s preference list for each SC c as Algorithm 2,
where a node has higher ranking if it has smaller distance
to the previous node.

We consider a graph whose vertices are nodes and let D
be the matrix that captures the weights of the graph’s edges.
Starting from a chosen vertex (owning the minimum L2), we
mark it as the current vertex. The next vertex is chosen and
added to the preference list of SC c if it is the closest vertex
from the current vertex. Repeatedly, we can find the nearest
neighbors that can embed all vNFs.

Node’s preference list. The physical node interest is to
improve its computing resource utilization. It means that
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Algorithm 3: Creating a node’s preference list
Input:All vNFs in N .
Output: P (m),∀m ∈M.
for each node inM do

1. Find the next vNF n such that rpm ≥ rpn,∀p ∈ P
and n sheds the smallest resources;

2. Add n into the preference list of node m.
end

nodes prefer assigning more vNFs to unassignment. This
goal can be seen as the objective of the knap-sack problem.
Therefore, we apply the Best Fit algorithm [38] to build
the preference list, the well-known heuristic algorithm to
solve the knap-sack problem. In particular, we find the next
vNF that sheds the smallest space left when being placed
into node m ∈ M. The smaller the space left by the vNF,
the higher the ranking it has in the preference list. The
procedure for creating the node’s preference list is presented
in Algorithm 3.

Algorithm 4: MDM: Multi-dimension matching algo-
rithm for subproblem P1

Input: N ,M.
Output: Embed all vNFs in N to nodes inM.
while ∃ c ∈ C, who is not saturated do

while ∃ n ∈ N is unassigned do
m← Get the highest rank in P (n);
if rpm ≥ rpn,∀p ∈ P then

Allocate n to m;
rpm = rpm − rpn,∀p ∈ P ;

end
else

Find all n′ to satify n �m n′;
Reject all n′ and set n′ as unassigned, also
update the resource of node m:
rpm = rpm + rpn

′,∀p ∈ P ;
Remove n′ out of P (m);
Remove m out of P (n′);

end
end

end

6.3 Many-to-one matching game for subproblem P1

After formulating the vNF placement problem as a many-
to-one matching game, we propose an extension of the
deferred acceptance algorithm [39] to deal with multi-
dimensional resources. When matching vNFs to nodes, each
node has to compare all its available resources with vNF’s
resources. This means that before matching node m to vNF
n, the resource constraints rpm ≥ rpn,∀p ∈ P , must be
satisfied.

Based on the Gale-Shapley many-to-one matching algo-
rithm [39], we design a multi-dimension matching (called
MDM) algorithm to find a stable matching. Since Gale-
Shapley-based algorithm can achieve stable and optimal
matching for the proposed side, our algorithm can optimize
the network traffic cost (the cost of P1) that is used to

build the preference list for vNFs. First, all vNFs in each
SC propose to nodes following their shared preference lists.
Physical nodes then accept vNFs based on their preference
lists and reject vNFs if their resources exceed the quotas.
Iteratively, all unassigned vNFs propose to the next nodes
based on their preference lists. One node can reject the
accepted vNFs, then accepts new vNFs if the new vNFs
have higher ranks in the node’s preference list. Similar to
the college admission algorithm [39], when the node rejects
one vNF, all the other accepted vNFs with lower ranks are
also rejected.

A pseudo-code implementation of our model is shown
in the Algorithm 4. Inspired by the deferred acceptance
algorithm [39], Algorithm 4 initializes from the unsaturated
SC in the list SC that has some unassigned vNFs n (line
3). vNF n picks the most interesting node m in its prefer-
ence list P (n) to propose (line 4). If node m has enough
resources to deploy vNF n, it will accept vNF n (lines 6-
8). Otherwise, node m rejects n. Before rejecting n, node
m rejects all matched vNFs n′ such that n �m n′ (lines
10-16). Then, vNF n also removes m out of its preference
list P (n) and restarts the proposing process. Even though
MDM is a multi-dimension matching algorithm, it follows
the basic principles of the deferred acceptance algorithm in
[39]. Therefore, MDM can eventually converge to the stable
allocation in a finite amount of steps.

6.4 Complexity analysis

We now give a brief complexity analysis for the matching
MDM algorithm. As discussed in Section 6, all vNFs in
SC c have the same preferences over active nodes. In each
iteration, there is at least one SC that is saturated, hence
MDM will terminate at C iterations. The complexity of the
matching approach only depends on the algorithms creating
preference lists. For SC’s preference lists, the sorting step of
each SC based on the nearest neighbor algorithm requires
O(M log2M) complexity [38]. Therefore, the complexity to
create the SC’s preference lists is O(CM log2M) for the set C
of SCs. Similarly, for a node’s preference list, the complexity
of Algorithm 3 is O(MN log2N). Consequently, the time
complexity of MDM is O(CM(Clog2M +N log2N)).

The MDM mechanism is designed based on the tradi-
tional matching approach that is executed in a centralized
way. To reduce the overhead of the centralized controller, we
then propose a distributed algorithm that enables a practical
implementation that can be executed on each physical node,
where resource monitoring and scheduling functions are
equipped [8].

6.5 Distributed implementation for the matching game

At each iteration of the SAMA, the matching approach can
reduce the computation cost of solving the subproblem
P1. However, a distributed implementation is still neces-
sary and highly desirable in practice, where each node
can execute its calculation for selecting appropriate vNFs
from the workload. Inspired by distributed stable matching
algorithm in [42], our mechanism includes two procedures,
the vNF procedure and the node procedure, as presented in
Algorithms 5 and 6, respectively. The execution is asyn-
chronous on each vNF n and node m.
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Algorithm 5: Matching procedure of vNF n
Input: The subsetM of active node.
Output: Match to accepted node inM.
end← false;
while !end and P (n) 6= ∅ do

m← Get the first node in P (n)
Send a proposed message to m;
msg ← Receive a message from a node;
if msg=“reject” then

Delete nodes out of P (n) who sends the
rejected message;

end
if msg=“stop” then

end← true;
end

end

Algorithm 6: Matching procedure of node m
Input: The set N of vNFs.
Output: Mapping vNFs in N to a given node m.
Set end← false and list← ∅ ;
while !end and P (n) 6= ∅ do

msg ← Receive messages from vNFs;
if msg=“propose” then

n← Get the proposed vNF index;
if rpn ≤ rpm,∀p ∈ P and n ∈ P (m) then

Sends an accepted message to n;
Add vNF n to list and update resources of
m: rpm = rpm − r

p
n′ ,∀p ∈ P;

end
else if rpn ≤ rpm − |list|p and n ∈ P (m) then

foreach n′ with n �m n′ do
Sends a rejected message to n′;
Update resources of m:
rpm = rpm + rpn′ ,∀p ∈ P;

end
if rpn ≤ rpm,∀p ∈ P then

Sends an accepted message to n;
Add vNF n to list and update resources

of m: rpm = rpm − r
p
n′ ,∀p ∈ P;

end
end
else

Sends a rejected message to vNF n;
end

end
if msg=“stop” then

end← true;
end

end

The vNF procedure. As shown in Algorithm 5, the
procedure is performed for every vNF agent n that proposes
to physical nodes based on its SC’s preference list P (n).

1) Propose to the first choice in its preference list.
2) Wait for the response message. If the response message

is “accept”, it does nothing. If the reply is “reject”, it
removes the sender of that message from its preference
list (This means that vNF n will not propose again to
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the node that already rejected its proposal).
3) Return to Step 1 until receiving a stop message or the

preference list be empty.
The node procedure. Similar to the vNF procedure, the

node procedure is also executed at each node, but it is more
complicated. The details of the nodem procedure are shown
in Algorithm 6 with steps as follows.

1) Wait for proposed messages from vNFs.
2) Accept vNF n that sends the proposed message if the

node has enough resources and n is in the preference
list. If node m prefers n to the current accepted vNFs,
these accepted vNFs may be rejected to accept n. Oth-
erwise, it sends the “reject” message to n and deletes n
and all vNFs n′, n �m n′ from its preference list.
We denote |list|p as the total amount of resource type p
of all accepted vNFs of node m.

3) Return to Step 1 until receiving a stop message or the
preference list be empty.

In both distributed procedures, the stop message is received
from a special agent, which can detect the quiescence of
messages exchanged between vNFs and nodes.

7 SIMULATION AND NUMERICAL RESULTS

In this section, we provide numerical settings and results
to validate the efficacy of our proposed methods compared
with other state-of-the-art approaches.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.8

1

1.2

1.4

1.6

1.8

σ

C
os

t

 

 

 Operation Network traffic

x103

Fig. 6: Impacts of weight parameter σ on the cost.

7.1 Simulation setup
We consider three types of vNFs whose configurations are
set according to four representative instances of middle-
boxes [4], including firewall, IPSEC, intrusion detection
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systems (IDS) and WAN optimizer instances, as shown in
Table 3.

In terms of the monetary weights, α, β are set to 0.1. By
comparing operational cost with traffic cost in varying effect
of σ as shown in Fig. 6, we observe that the network traffic
cost is higher than operational cost when σ < 0.173, and
vice version. Therefore, by choosing any value of σ < 0.173,
we can emphasize the importance of the network traffic
cost. It is clear that when σ is very small e.g., 0.1, we will
have the traffic cost significantly dominate the operational
cost. On the other hand, in this simulation, we would like
to have a more balanced representation with σ = 0.14,
where traffic cost still dominates the operational cost, but
not significantly to avoid an extreme case. Of course, the
network operator can set any value of σ lower than 0.173
to emphasize the network traffic cost, and vice versa as
shown in Fig. 6. The power of active node Qi is set 250
Watts uniformly, similar to [43]. We equally set the priority
of all resources, where ωp = 1,∀p ∈ P . We also simulate
our work with the configurations of vNFs based on the
standard extra large instance on Table 3. Finally, we create
the distance matrix D of the network for the system based
on the topology in [34]. By using fast network simulation
setup (FNSS) [44], we create the network topology with the
values in range from 1 to 5, as shown in Fig. 4. Inside the
cluster of servers, we set the link cost to 1 and the connection
between two nodes inside the aggregation switches is set
to 3. The highest cost is set to 5 for the connections going
through the core routers. Furthermore, in order to illustrate
the efficiency of SAMA, we evaluate our proposed method
in each time slot with fixed parameter settings and over
a long term with dynamic settings. For workload, we use
the increasing trace workload [45] within 10 time slots to
evaluate the impact of workload on the total cost of our
proposed method. Moreover, we use the trace of electricity
price in one week from [46] for our simulation, as shown
in Fig. 5b in order to conduct the efficiency of reducing the
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Fig. 9: Comparison between SAMA and the Anchor frame-
work.

total cost in OPNET corresponding to dynamic settings.

7.2 Results

In order to evaluate the convergence, optimality, and impact
of SAMA, we compare the proposed mechanisms with three
following baselines and prior approaches:

• Baseline 1: This baseline only uses a consolidation
policy to place vNFs that optimizes the number of
active nodes in the assignment.

• Baseline 2: This baseline only relies on the network
traffic policy that optimizes the network traffic cost
incurred in the system.

• Optimal: To quantify the gap between SAMA and the
optimal solution, we compare SAMA to the optimal
baseline that is solved by the JuMP solver [47]. Note
that due to the inherent complexity of the optimal
vNF placement problem, the time complexity of the
JuMP solver turns out to be exponential in the large-
scale problem.

• Markov-JuMP: Recall that the subproblem P1 is
solved by the matching approach that obtains a close
optimal solution. To quantify the gap between the
optimal solution (using the JuMP solver) and the
matching approach, we compare SAMA to the base-
line that is combined MA method and JuMP solver.

• Anchor: We also compare our approach with a
matching-based consolidation algorithm, named An-
chor in [40].

Convergence. We run Algorithm 4 and Algorithm 1
to evaluate the convergence of the matching and SAMA
algorithms, respectively. The results in Fig. 7a show fast
convergence in both simulation settings: the random in-
stance size and the large instance size, in case of Algorithm
4. With the large vNF instances, there are many SCs that
could not be deployed entirely into the same node due to
lack of resources. Therefore, there are more rejected vNFs
in each matching iteration. It also results in the number of
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iterations increasing, but it does not increase exponentially
with a large number of nodesM and the number of vNFsN .
The convergence is not quite sensitive to the values ofN and
M , which shows the advantage of our matching approach.
With the advantage of fast convergence, our mechanism
impacts efficiently to the practical network consisting of
thousands of nodes and vNFs. Hence, matching approaches
can be applied to the environment of heterogeneous nodes
and workload.

We next evaluate the convergence of Algorithm 1 with
different values of δ and compare it to MA based approach.
In theory, to approach the optimal solution of OPNET, we
can set δ → ∞ as mentioned in Section 4. In practice, we
select a value of δ that is large enough to limit the pro-
posed algorithm that can converge within 1000 iterations.
We explore the effect of δ by conducting an experiment as
shown in Fig. 7b. For a larger value of δ, SAMA converges
more closely to the optimal solution (i.e., the optimal gap
is smaller). The total cost of OPNET decreases when the
value of δ increases. The minimum value of total cost can
be obtained around 800 iterations with δ = 105. Meanwhile,
comparing to the standard MA approach, it still fluctuates
within 1000 iterations, owing to a large number of feasible
configurations.

Total incurred cost. We next compare SAMA with two
baselines, Baseline 1 and Baseline 2, in 10 time slots, as
shown in Fig. 8. Baseline 1 aims to consolidate the resource
utilization of nodes and reduces the number of active nodes,
hence its average operational cost tends to be the lowest.
However, considering from time slots 7 to 9, the operational
cost of SAMA is lower than Baseline 1 since the wear-and-
tear cost increases in Baseline 1.

Meanwhile, only optimizing the traffic cost, all vNFs of
each SC in Baseline 2 aim to occupy one node or a group
of nodes that incurs the lowest traffic cost, but this policy
utilizes a lot of active nodes. Although it appears to be the
worst in the first comparison case, Baseline 2 obtains the
best result, when only traffic cost is considered, as shown in
Fig. 8b.

By dynamically controlling the operational and network
traffic costs, SAMA obtains the lowest total cost in all
considered time slots as shown in Fig. 8c. Specially, when
the workload is changed, Baseline 1 and Baseline 2 show
the drawback in optimizing the network traffic cost and
operational cost, respectively. During 10 time slots, SAMA
reduces 19.1% and 9.28% of the total cost compared with
the Baseline 1 and Baseline 2, respectively, as seen in Fig. 8c.
It also demonstrates that jointly controlling the operational
and the network traffic is efficient and significant in vNF
placement problem. Furthermore, we illustrate the gap be-
tween the Optimal, Markov-JuMP and SAMA in Fig. 8d.
Since each iteration invokes the matching algorithm to solve
subproblem P1 that does not guarantee an optimal result for
the outcome, the total cost of SAMA still has a small gap that
strictly follows Optimal and Markov-JuMP.

Comparison between SAMA and the Anchor frame-
work. The Anchor framework [40] is a related approach
that focuses on resource consolidation in datacenters using
a matching game. However, the authors in [40] did not
explain clearly how to build the preference lists for both
sites in the matching method. Thus, we make the preference

lists for both vNFs and nodes based on the Best fit algorithm
(similar to the method discussed in Section 6.2).

In the first case with a single vNF instance in an SC,
the total cost of SAMA and Anchor looks similar during
10 time slots, as shown in Fig. 9a, since the network traffic
cost of all virtual links are the same during that period and
the objective of OPNET mainly optimizes the operational
cost. However, Anchor does not consider wear-and-tear
costs that make the total cost increase over a long term
(which is shown clearly in the next evaluation). In the
second case, we compare SAMA and Anchor with multiple
vNF instances in an SC. The Anchor framework ignores the
interconnection between vNFs in each SC, which makes the
total cost higher than SAMA. This causes the gap between
SAMA and Anchor, as shown in Fig. 9b.

Comparison between SAMA and others in the long-
run simulations. To characterize the effect of our proposed
method in dynamic workload and electricity price settings,
we evaluate our method over a long term. We illustrate
clearly that our method outperforms others not only in
a short term but also over a long term consideration. As
mentioned in the assumption of Section 3, we use a discrete-
time model, which has a time period (e.g., an hour) of
interest. Then, we set the dynamic value of the price (α) to
follow this trace and measure the efficiency of our method
in long-term average operational cost, traffic cost, total cost
and number of active nodes. We compare the results of
four approaches (Baseline 1, Baseline 2, Anchor and SAMA)
based on two kinds of SCs (single vNF per SC and multiple
vNFs per SC) to reflect the efficiency of our method. Note
that: our method does not guarantee the optimal solution
over long term due to lack of information of workload in
future.

In the case of a single vNF instance per SC, there are
not many differences between approaches, as shown in
Fig. 10. Because the network traffic cost of all virtual links
are the same, and only the number of active nodes impacts
the incurred total cost. The difference of each approach is
depicted distinctly in the complex case of multiple vNFs per
SC. In detail, Baseline 1 and Anchor utilize less number of
active nodes comparing to others, as shown in Fig. 10d, so
that their operational costs are also reduced. However, these
approaches do not consider the wear-and-tear costs, which
over a long term, make their operational costs increase more
than SAMA, as illustrated in Fig. 10a. In contrast, Baseline
2 optimizes the traffic cost that is sketched in Fig. 10b.
Conducting both energy cost and wear-and-tear cost in the
operational cost, our method can reduce costs by about
8.7% in operational cost compared to Baseline 1. About
the long-term traffic cost, SAMA consumes nearly the same
network traffic cost as that of Baseline 2. Consequently,
SAMA generates the lowest long-term cost compared to
others.

Impact of wear-and-tear overhead. Finally, we evaluate
the impact of wear-and-tear cost of SAMA and compare
it with Baseline 1, Baseline 2 and Anchor. Baseline 1 and
Anchor only reduce active nodes in deploying vNFs without
considering wear-and-tear cost. Therefore, at each time slot,
they pack vNFs into the smallest subset of active nodes and
turn-off redundant physical nodes. Fig. 11 shows the highest
wear-and-tear cost of Baseline 1 and Anchor. Regarding
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Fig. 10: Comparison between SAMA and others in the long-run simulation.
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Fig. 11: Evaluation of wear-and-tear overhead.

Baseline 2, it seems to have the smallest wear-and-tear
cost, but the varying wear-and-tear cost of Baseline 2 looks
more fluctuated than SAMA. Since Baseline 2 relies on the
vNF traffic cost, it does not optimize the active node set,
which directly impacts wear-and-tear cost in the system.
Our proposed method, SAMA, reduces this cost by about
27% compared to Baseline 1 during 10 time slots.

8 CONCLUSION

In this paper, we have studied the problem of joint opera-
tional and network traffic cost, OPNET, in the environment
of heterogeneous nodes and diverse proprietary network
appliances. We have formulated OPNET as the combina-
torial NP-hard problem and designed a method to solve it,
named SAMA. SAMA combines the MA method and many-
to-one matching game to find a close-to-optimal solution,
where the outcome has a small gap with the optimal solu-
tion. Furthermore, to implement on the practical NFV archi-
tectures that support centralized and distributed manners,
we first have investigated the centralized approach that the
controller can handle and compute an optimal allocation
scheme in each time slot. We then have designed a dis-
tributed matching algorithm to decentralize the calculation
to each physical node. To evaluate the efficiency of SAMA,
we have compared our method with current methods that
only consider traffic cost or operational cost. Simulation
results show that SAMA can reduce the total cost by up to
19% compared to the existing non-coordinated approaches.
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