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Abstract—In current wireless communication systems, there is a rapid development of location based services, which will play an
essential role in the future 5G networks. One key feature in providing the service is the mobile crowdsourcing in which a central cloud
node denoted as the principal collects location based data from a large group of users. In this paper, we investigate the problem of how
to provide continuous incentives based on user’s performances to encourage users’ participation in the crowdsourcing, which can be
referred to the moral hazard problem in the contract theory. We not only propose the one-dimensional performance-reward related
contract, but also extend this basic model into the multi-dimensional contract. First, an incentive contract which rewards users by
evaluating their performances from multiple dimensions is proposed. Then, the utility maximization problem of the principal in both
one-dimension and multi-dimension are formulated. Furthermore, we detailed the analysis of the multi-dimensional contract to allocate
incentives. Finally, we use the numerical results to analyze the optimal reward package, and compare the principal’s utility under the
different incentive mechanisms. Results demonstrate that by using the proposed incentive mechanism, the principal successfully
maximizes the utilities, and the users obtain continuous incentives to participate in the crowdsourcing activity.

Index Terms—Crowdsourcing, incentive mechanism, multi-dimension, moral hazard, contract theory.
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1 INTRODUCTION

NOWADAYS, people are used to accessing various so-
phisticated location based services (e.g., Yelp and

Google Map) by their smartphones via/through wireless
access networks [1]. Most location based services are es-
sentially based on crowdsourcing which is a technology
that requires user to regularly transmit data to the for the
service provider which is denoted as principal here after.
The data is obtained by the embedded sensor such as GPS,
accelerometer, digital compass, gyroscope, and camera, or
users themselves [2]. Once the data is aggregated and
processed by the principal, the location-based service is
provided to the users for free or with purchase. The brief
illustration of crowdsourcing is shown in Fig. 1. One well-
known application is the live auto traffic map offered by
Google. Smartphone users transmit the traffic information
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Fig. 1: An illustration of crowdsourcing.

which includes the time, location, and velocity to Google.
Google collects and processes the data to provide free live
traffic map to mobile users [3].

With the drastic growth in the global location based ser-
vice market, and the rapid development of big data technol-
ogy, more data as well as user participation are required to
support more sophisticated services [4]. Although the users
receive the satisfaction from enjoying the location based ser-
vice, there are many concerns that stop users from providing
location based data for the principal. When participating in
a crowdsourcing activity, users contribute their effort, time,
knowledge and/or experience, and consume the battery
power and computing capacity of their smartphones. In
addition, the users expose their locations with potential
privacy threats [5]. Hence, many users hesitate to participate
in with those concerns, which becomes one of the serious
impediments to the development of location based services



[6]. Thus, necessary incentive mechanisms that motivate the
users to participate in crowdsourcing are needed to address
those critical demands.

Many researches have already noticed that there is an
urgent need to alleviate these challenges by providing in-
centive mechanisms to the users. For some kinds of location-
based data, users are incentivized to upload data with sim-
ple rewards, such as allowing them to use the location-based
app for free like Google Map. But this kind of incentive
is not a solution for all problems. But for some kinds of
crowdsourcing activities, the data collection process may
require extra effort from users, instead of simply turn on
the smartphone or app. For example, the recent popular
app MoBike for public bike sharing encourages users to
take a photo of the place where the bike has been parked
after being used, also description of the location is preferred,
which together serve as supplementary information despite
the GPS. In this case, extra credit is needed to motivate
users to help. For similar location based services, more com-
plicated incentive mechanisms are needed to better drive
users’ action.

The design proposed in [7] is to give users a one-time
reward after users have accomplished a certain task. A
problem with this mechanism is its inability to provide
continuous incentives to users to stay active after receiving
the opening reward [8]. Inspired by the effort-based reward
from the labor market, several works studied this problem
by providing users with the amount of reward that is consis-
tent with their performances. The work in [5] and [9] have
derived the performance and reward dependent function
for users that induces the maximum profit for the principal.
In one of our previous works [10], we have also proposed
a contract that includes user’s current performance related
reward and user’s satisfaction from enjoying the free service
in the reward package.

The works above capture the fundamental aspect of
providing necessary incentive for user to participate in the
crowdsourcing activity. However, beyond these insights,
the simplified one-dimensional models are too abstract to
capture the main features of the user’s contributions, since
users are supposed to work on several different tasks [11].
For example, a user’s contribution to Yelp involves many
dimensions and cannot adequately be reduced to a simple
problem of effort choices. Users do not only make location
based check-ins, upload photos, and write reviews for the
restaurants and bars. But, they are also encouraged to
invite new friends to sign up, and to give feedbacks and
suggestions to Yelp for the website to determine the future
overall strategy [12]. Generally speaking, in the real world
crowdsourcing, the user’s action set is considerably richer
than in the previous literatures have described, and the
variables in the contract can be conditioned on are much
more difficult to specify or to observe precisely.

The complexity of real world scenarios makes one di-
mensional incentive mechanisms hard to adapt; in addition,
other considerations also arise if we only reward users based
on one aspect of the performance [13]. Still taking Yelp
for example, suppose we introduce a mechanism that links
user’s reward to the number of his/her reviews, the advan-
tage of this mechanism is that it provides an independent
measure of the user’s performance. But there is also an

disadvantage that it measures only a part of what users
are encouraged to contribute to the website. To put it in
another way, if the crowdsourcing is a single-task problem,
in which the only thing user needs to do is writing reviews,
the quality of a review such as length, correctness, and
objectiveness is not considered. If the crowdsourcing is a
multi-task problem such as Yelp, the other tasks such as
checking-ins, uploading photos, and inviting friends will be
ignored. In a nutshell, there is a definite risk that this policy
will induce users to overwhelmingly focus on the part that
will be rewarded and to neglect the other components that
can enrich the content of the crowdsourcing activity [14].

Thus, a qualified mechanism can both reward user’s
effort in a comprehensive way, and drive user’s incentive to
undertake actions that affect the principal’s utility, in return.
To capture the incentive problem in crowdsourcing, the
one-dimension incentive mechanism needs to be modified
into a number of dimensions. At the very least the user’s
action set must include the range of different tasks it is
responsible for. Furthermore, performance measures must
be multi-dimension rather than one-dimension for all, so
that the principal can drive user’s incentives by assigning
different reward weights on different tasks [15].

Based on this motivation, we aim at offering a contract
that considers different aspects of user’s contributions, and
assigns different reward weights on their performance in
order to incentivize them to provide high quality informa-
tion to the principal. Fortunately, the moral hazard problem
from contract theory provides us a useful tool to design
such a mechanism that can solve the employees’ multi-
dimension action problems when performing multiple tasks
[16]. Indeed, the moral hazard model can be adopted to
solve the crowdsourcing incentive problem. From the princi-
pal’s perspective, it “employs” the users to upload location
based data and reward them by multi-dimension measures.
The principal makes profit by extracting useful information
from the collected data, which also incurs a cost such as
the reward given back to users. Thus, to maximize its own
payoff, the principal needs to find an optimal mechanism
that can properly reward user’s efforts and drive user’s
incentives [17].

The main contributions of this paper are summarized
as follows. First, we are first to propose a performance
and reward consistent contract to maximize the principal’s
utility as well as to provide users with a continuous in-
centive to participate in crowdsourcing activities. Second,
we extend the incentive mechanism from one-dimension to
multi-dimension, which characterizes the general situation
in real world and provides comprehensive reward package
to the users. Last, through simulations, we reveal different
parameter’s impacts on the optimal reward package, and
compare the principal utility under six different incentive
mechanisms. Our results show that by using the proposed
incentive mechanism, the principal successfully maximizes
the utilities and the users obtain the continuous incentives
to participate in the crowdsourcing activity.

The remainder of this paper is organized as follows.
First, we will introduce the network model in Section 2.
Then, the problem formulation is described in Section 3,
and we give the extended analysis of the multi-dimensional
case. The performance evaluation is conducted in Section 4.



Finally, Section 5 draws the conclusion.

2 SYSTEM MODEL

In this section, we will first introduce the principal-user
model by constructing the reward package offered by the
principal. Then, we will give the utility functions of both
the user and principal before proceeding to the solution of
the optimal contract. We assume that the crowdsourcing
is a multi-task problem, in which there are n tasks that
the user can work on and will be rewarded based on its
performances on the different tasks.

2.1 Operation Cost
When crowdsourcing for the principal, the user encounters
an operation cost which includes the consumption of power
due to signal processing, execution, and data uploading
activities, in addition to power consumption due to data
transmission. But the operation cost does not only restrict
to the power consumption, but also the user’s effort, time,
knowledge and/or experience. Consider a user who par-
ticipates in a crowdsourcing activity who makes a one-time
choice of a vector of efforts a = (a1, . . . , an), n ≥ 1, for those
tasks. When exerting efforts, the operation cost incurred is
defined in a quadratic form [18],

ψ(a) =
1

2
aTCa, (1)

where C is a symmetric n× n matrix with the form of

C =

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 . (2)

The diagonal element cii of C reflects the user’s task-specific
operation cost coefficient, and the off-diagonal elements cij
represent the relationship between two tasks i and j.

The sign of cij indicates technologically substitute, com-
plementary, independent between two tasks i and j, if
cij > 0, < 0, = 0, respectively. If two tasks are tech-
nologically substitute, raising the effort on one task raises
the marginal operation cost of the effort on the other task.
The example of technologically substitute is dynamic route
planning and traffic jam detection. When the roads are
detected as highly congested, the navigation app will start
to recalculate the route so that the driver can avoid them.
Thus, more power is consumed. In contrast, raising the
effort on one task decreases the marginal operation cost
of the effort on the other task if they are technologically
complementary. There are two examples for technologically
complementary: 1) mapping GPS traces to road segments
and route/travel time estimation, 2) traffic jam detection
and visualization. In both examples, good achievements in
one task ease the work in the other task, and thus save the
power. For technologically independent tasks, their opera-
tion cost is not dependent on how much efforts are exerted
on other tasks. There are many technologically independent
examples in crowdsourcing, such as reporting of location,
time, and speed in the dynamic traffic map.

Therefore, under different scenarios, the exact form of
the operation cost function ψ(a) varies. In return, the op-
timal reward varies with the shape of the operation cost

functions. In particular, the user decision on the effort level
for one task affects the marginal operation cost of undertak-
ing other tasks, will be discussed in the next section. In this
paper, we do not consider the technologically complemen-
tary case, since it does not provide further insights of this
model, but increases the mathematical complexity. Thus, the
operation cost coefficient matrix is a positive semi-definite
matrix with every element in C is non-negative.

2.2 Performance Measurement

The location based data received by the principal may
differs from the user’s actual situation. The error may
come from the measurement system. For example, there are
usually GPS position errors due to the device and signal
diversity, especially in “urban canyons” near tall buildings
or tunnels [19]. Another example is the urban noise map-
ping system, in which the sound level meter (SLM) has a
precision of ±2.7 dB [20]. The phone position and context
can induce errors and enlarge the variance of errors.

We assume that the effort a the user exerts is hidden from
the principal, but the user’s contribution can be observed as
a vector of information q = (q1, . . . , qn), n ≥ 1, which can
be regarded as the user’s performance. Due to the previous
mentioned reasons such as the different measurability on
tasks, the received information q varies [21]. Therefore, the
performance of the user is a noisy signal of its effort:

q = a+ ε, (3)

where the random component ε = (ε1, . . . , εn), n ≥ 1, is
assumed to be normally distributed with mean zero and
covariance matrix Σ. Thus, the user’s performance follows
the distribution of q ∼ N(a,Σ).

The variance Σ is a symmetric n × n covariance matrix
with the form of

Σ =

 σ
2
1 · · · σ1n
...

. . .
...

σn1 · · · σ2
n

 , (4)

where σ2
i denotes the variance of εi, and σij is the covari-

ance of εi and εj [22]. The variance denotes the difficulty
to guarantee the correctness of measuring effort [23], and
also reflects the relationship between the effort exerted by
the user and the performance observed by the principal. If
the variance is large, the measurability of the performance is
difficult, and there is a high probability that the performance
is poorly measured and far away from the true effort user
exerted. An example is the use of a smartphone microphone
as a SLM, which incurs large errors when the phone is put
in a pocket or when making a phone call [24]. In contrast,
if the performance is easy to measure, the variance will
be small or even zero. For example, the report of time is
an independent measure with variance 0. The covariance
of two measurements exists because the measurement on
one task may affect the measurement of the others; for
example the detection of a pothole and a bump have a
strong connection. Due to this measurement error, both the
principal and user will face the measurement cost when
integrating multiple tasks.



Fig. 2: The multi-task reward contract.

2.3 Reward Package

Inspired by the manager’s reward package in industry,
which comprises a fixed salary, a bonus related to the firm’s
profits, and stock options related reward based on the firm’s
share price [25], we define the user’s reward package w in
crowdsourcing as a linear combination of a fixed salary and
several performance related rewards [26]. By restricting the
reward package offered by the principal in the linear form,
the reward package w user receives by participating in the
crowdsourcing activity can be written as

w = t+ sT q, (5)

where t denotes the fixed reward salary, which is a constant
and is independent of performance, and s = (s1, . . . , sn),
n ≥ 1, is the reward related to the user’s performance q.
As q is a random variable which follows q ∼ N(a,Σ), the
reward package w is also a random variable with a mean of
t + sTa. From the scaling property of covariance, we know
that V ar(sT q) = sTΣs. Thus, the reward package follows
the distribution w ∼ N(t+ sTa, sTΣs).

At this point, we can propose the contract that is offered
by the principal as (a, t, s), where a and s are n× 1 vectors,
and t is a constant value. Under this contract, the principal
offers the user a reward package which includes a fixed
salary t, and n performance related rewards (s1, . . . , sn).
Fig. 2 illustrates how this contract works. The user exerts
effort ai for task i, which is observed as a performance qi
by the principal. The principal offers a reward related to qi,
with the reward assigned to the task as si.

2.4 Utility of User

In this model, we assume that the user has constant absolute
risk averse (CARA) risk preferences, which means the user
has a constant attitude towards risk as its income increases.
Due to the conservative property of user, we want to define
the user’s utility function as a concave form. Furthermore,
due to the symmetric matrix form of the measurement error
and cost coefficient, we need to have the utility function
in an exponential form, so that we can transfer the utility
function to another form and simplify the problem solving
process. Thus, we adopt the negative exponential utility
form [27],

u(a, t, s) = −e−η[w−ψ(a)], (6)

where η > 0 is the agent’s degree of absolute risk aversion

η = −u
′′

u′
, (7)

where u is the user’s utility function. A larger value of η
means more incentive for the user to implement an effort.
The utility and operation cost of the user are measured in
such monetary units that they are consistent with the reward
from the principal. Thus we have the user’s utility function
as a concave function, and can easily transform the utility
function to certainty equivalent which will be explained
later, to simplify the problem solving process.

From (6), we see that the user’s utility is a strictly
increasing and concave function. For lower computation
complexity, we can make use of the exponential form of the
utility function, and use certainty equivalent as a monotonic
transformation of the user’s expected exponential utility
function [28].

Proposition 1. The user’s utility can be equally represented by
certainty equivalent:

CEu = t+ sTa− 1

2
aTCa− 1

2
ηsTΣs. (8)

The certainty equivalent consists of the expected reward
minus the operation cost and measurement cost. The detail
proof of this transformation can be found in the Appendix.

2.5 Utility of Principal

In this model, we regard the principal as a “buy and hold”
investor, who cares only about the direct performance of
the user [29]. That is, the principal is not concerned about
its profit from the location based service in the secondary
market (e.g., advertisement selling). Therefore, the effort a
leads to an expected gross benefit of V (a), which accrues
directly to the principal. Thus, we define the utility of the
principal as the expected gross benefits of V (a) minus the
reward package w to the user. Thus, the principal’s expected
utility is written as

U(a, t, s) = V (a)− w, (9)

where V (·) is the evaluation function which follows V (0) =
0 and V ′(·) > 0. Different from the user who has CARA risk
preferences, the principal here is assumed to be risk neutral,
i.e., V ′′(·) = 0. Thus, the expected profit of the principal can
be simplified to

U(a, t, s) = βTa− w, (10)

where β = (β1, . . . , βn), n ≥ 1, characterizes the marginal
effect of the user’s effort a on the principal’s utility V (a).
Similar to the definition of user’s certainty equivalent, we
can derive the principal’s certainty equivalent as

CEp = E[βTa− w], (11)

= βTa− sTa− t.

2.6 Social Welfare

With the definitions of both user’s and principal’s utility
functions and certainty equivalent payoffs, we can have



the social welfare defined as their joint surplus, i.e., the
summation of user’s and principal’s equivalent certainty:

R = CEu + CEp, (12)

= βTa− 1

2
aTCa− 1

2
ηsTΣs.

The social welfare is the effort exerted by the user, minus the
operation cost and the cost incurred by inaccurate measure-
ment. Notice that this expression is independent of the fixed
salary t, which serves as an intercept term in the contract.
Thus, the fixed salary t can only be used to allocate the total
certainty equivalent between the two parties [30]. Later we
will see that, under the optimal contract, the social welfare
has the same value as the utility of the principal, as the
user receives zero utility in crowdsourcing by receiving the
optimal reward package.

3 PROBLEM FORMULATION

With the system model, we can formulate the principal’s
utility maximization problem while providing the user nec-
essary incentives to participate. The principal’s problem can
be written as

max
a,t,s

U(a∗, t, s), (13)

s.t. (a) a∗ ∈ arg max
a

u(a, t, s),

(b) u(a∗, t, s) ≥ u(w),

where u(w) is the reservation utility of the user when not
taking any effort (a = 0) in the crowdsourcing. The principal
maximize its own utility under the incentive compatible
(IC) constraint (a) that the user selects the optimal effort
a∗ maximizing its own utility, and the individual rationality
(IR) constraint (b) that the utility user received is no less
than its reservation utility.

In the following subsections, we will first solve this
problem in the one-dimension case. Then, we will extend
this problem to multiple dimensions, which is the general
case in reality. Then, we will exam three specific scenarios to
have deeper understanding of the multi-dimension incen-
tive problem.

3.1 One-Dimension Moral Hazard

When this incentive problem is one-dimension, i.e., n = 1,
the user makes a single effort choice a, and the dis-
tribution of the effort measurement error ε reduced to
N(0, σ2

1). Therefore, the user’s performance distribution is
q ∼ N(a, σ2

1). As a result, the reward package now is written
as

w = t+ sq, (14)

where s is also a constant value. The user’s operation cost is
reduced to

ψ(a) =
1

2
c11a

2. (15)

Typically, the user and principal’s utility and certainty
equivalent can be written, respectively, as

u(a, t, s) = −e−η(t+sq− 1
2 c11a

2), (16)

CEu = t+ sa− 1

2
c11a

2 − 1

2
ηs2σ2

1 . (17)

U(a, t, s) = βa− w, (18)
CEp = βa− sa− t. (19)

As the certainty equivalent is a monotonic transfor-
mation of the expected utility function, maximizing the
principal’s and user’s expected utilities is equivalent to
maximizing their equivalent certainty payoffs. Thus, we can
rewrite the optimization problem in terms of their certainty
equivalent wealth, and thus obtain the following simple
reformulation of the principal’s problem:

max
a,t,s

(β − s)a− t, (20)

s.t. (a) a∗ ∈ arg max
a

[t+ sa− 1

2
c11a

2 − 1

2
ηs2σ2

1 ],

(b) t+ sa− 1

2
c11a

2 − 1

2
ηs2σ2

1 ≥ w,

where w denotes the reservation reward of the user when
not participating in the crowdsourcing activity.

This one dimensional problem is easy to solve by using
the first-order approach. In the first step, we reduce the IC
constraint in (a) by taking the first derivative of the user’s
certainty equivalent regarding a, and setting u′(a, t, s) =
0. Then, we obtain the effort a = s/c11. Accordingly, we
substitute the IR constraint in (b) with the optimal effort a∗

and simplify the principal’s problem to

maxa,t,s (β − s) s
c11
− t, (21)

s.t. (a) s s
c11

+ t− 1
2c11

(
s
c11

)2
− 1

2ηs
2σ2

1 = w.

Substituting for the value of t in the IR constraint and
maximizing with respect to s, we then have the fraction
of reward s∗ related to performance in the optimal linear
reward package as:

s∗ =
β

1 + ηc11σ2
1

. (22)

With s∗, we have the optimal effort

a∗ =
β

c11 + ηc211σ
2
1

. (23)

Representing t by w, s∗ and a∗, we obtain the fixed salary t
in the optimal linear reward package as:

t∗ = w +
1

2

(
ησ2

1 −
1

c11

)
s2, (24)

= w +
1

2

(
ησ2

1 −
1

c11

)[
β

1 + ηc11σ2
1

]2
.

Under the single task problem, we see that the user’s re-
ward package and optimal effort are all decreasing with the
operation cost coefficient and the variance of measurement.
In other words, the higher the operation cost, or the more
difficulty to measure a performance, the user will be less
likely to exert effort in the crowdsourcing.



3.2 Multi-Dimension Moral Hazard

When this problem has multiple dimensions, i.e., n ≥ 2,
the problem becomes more complicated to solve. In this
subsection, we will first solve the general case where we
assume that the measurement error is stochastic dependent
and the user’s effort is technologically dependent. After this
general solution, we will move on to the bench mark case
with both stochastic and technological independence.

Under the assumption of stochastic dependent, the er-
ror terms are stochastically interacted, i.e., σij 6= 0. For
technologically dependent, we mean that the activities are
technologically correlated with each other, i.e., cij > 0 and
C is a positive definite matrix.

Similar to the previous section, we still solve this multi-
dimensional problem by using certainty equivalent model
with the following simple reformulation of the principal’s
problem:

max
a,t,s

βTa− sTa− t, (25)

s.t. (a) a∗ ∈ arg max
a

[t+ sTa− 1

2
aTCa− 1

2
ηsTΣs],

(b) t+ sTa− 1

2
aTCa− 1

2
ηsTΣs ≥ w,

where w also denotes the reservation reward of the user
when not participating in the crowdsourcing activity. The
IC constraint represents the rationality of the user’s effort
choice. The IR constraint in (b) ensures that the principal
cannot force the user into accepting the contract.

Similar to the one-dimension case, we first solve the opti-
mal effort by reducing the IC constraint first. The user’s cer-
tainty equivalent is concave, since its second-order deriva-
tive with respect to a is a negative definite matrix−C . Thus,
the optimal effort can be determined by taking the first-
order derivative of the user’s certainty equivalent regarding
a, and set u′(a, t, s) = 0. In the matrix differentiation, if
we define α = aTCa, as C is a symmetric matrix, we have
∂α/∂a = 2aTC [21]. Since C is symmetric positive definite,
its inverse is existent. Thus, through numerical derivations,
we can finally have a = C−1s in this multi-dimension case.
Accordingly, we substitute the IR constraint in (b) with the
optimal effort a∗ and simplify the principal’s problem to

maxa,t,s βTC−1s− sTC−1s− t, (26)
s.t. (a)t+ sTC−1s− 1

2 (C−1s)TC(C−1s)− 1
2ηs

TΣs = w.

Substituting the value of t in the IR constraint to the objec-
tive and differentiating the objective function with respect to
s, we have the performance related reward s∗ in the optimal
multi-dimension reward package as:

s∗ = (C−1 + ηΣ)−1C−1β = (I + ηCΣ)−1β. (27)

With s∗, we have the optimal effort in the multi task case as

a∗ = C−1(I + ηCΣ)−1β. (28)

Representing t by w, s∗ and a∗, we obtains the fixed salary
t in the optimal linear reward package as:

t∗ = w +
1

2
sT (ηΣ− C−1)s, (29)

= w +
1

2

[
(I + ηCΣ)−1β

]T
(ηΣ− C−1)

[
(I + ηCΣ)−1β

]
.

Comparing this equation with the first order results, we see
that the first order reward package is one special case of
this general case and can be derived from this general case
directly by setting the matrixes as one dimension (n = 1).

Using the formulas (27) for s∗ we can indeed determine
how the optimal linear incentive reward varies with the
accuracy of output measures for each task and the operation
cost coefficient of each task. Assume, for example, when
two tasks are technologically substitution cij > 0, if the
measurability of task i worsens, that is, σ2

i increases, then,
as is intuitive, s∗j goes up, but s∗i goes down. Thus, there is
a measurement complementarity between the s∗i and s∗j in
the presence of technologically substitutes problems [16].

A higher incentive reward can induce the user to imple-
ment a higher effort, but it will also expose the user to a
higher risk. It, therefore, requires a premium to compensate
the risk averse user for the risk he/she bears. The optimal
power of incentive is therefore determined by the tradeoff
between incentive and insurance.

3.2.1 Stochastic Independent and Technologically Inde-
pendent

In this benchmark case, the error terms are stochastically
independent (i.e., σij = 0, Σ is a diagonal matrix), and
the tasks are technologically independent (i.e., cij = 0, C
is a diagonal matrix). Thus, the optimal incentive contract
for each task is similar to the single-task problem, and the
solution in (27) simplifies to

s∗i =
βi

1 + ηciiσ2
i

, ∀i ∈ {1, . . . , n}. (30)

The user’s optimal choice of effort becomes

a∗i =
sii
cii

=
βi

(1 + ηciiσ2
i )cii

, ∀i ∈ {1, . . . , n}. (31)

Representing t by w, s∗ and a∗, we obtain the fixed salary t
in the optimal linear reward package as:

t∗i = w +
1

2

(
ησ2

i −
1

cii

)[
βi

1 + ηciiσ2
i

]2
. (32)

In this case, efforts are set independently of each other
since the operation cost of inducing the user to perform any
given task is independent of the other tasks. As expected,
s is decreasing in risk aversion degree η, operation cost
coefficient cii and measurement error variance σ2

i . We can
also prove the relationship between reward si and effort ai
from a = C−1s. As in this technologically independent case,
C is a diagonal matrix with elements cii on the diagonal.
Thus, we can take the partial derivatives as

∂si
∂ai

= cii, and
∂ai
∂si

= c−1ii . (33)

Thus, we see that the reward si for effort ai is decreasing in
cii, and the higher of si, the more effort the user is like to
exert.

The algorithm for solving the formulated problems is
summarized in Algorithm 1.



Algorithm 1: Optimal Contract
Input: β, n, C , η, Σ, w̄
Output: a, s, t
1. Optimal Effort;
Represent optimal effort a∗ by s and t from first
derivative of (20/25a);
2. Optimal Reward Package;
Take the optimal effort a∗ into (20/25);
Obtain the reward s and fixed salary t, as well as a;

3.3 Extending Analysis

3.3.1 Zero Incentive

In this part, we analyze one special case, in which the
principal does not provide any incentive for some tasks. In
other words, the reward si for task i is less than or equal to
zero. In the general multi-dimension case, the optimal effort
a is affected by those cross-partial of C due to technological
substitutes. To illustrate how the operation cost coefficients
affect the principal to assign a zero reward, we consider
the two-dimension case with stochastic independent, i.e.,
σ12 = σ21 = 0. We assume that task 2 is easy to measure, i.e.,
σ2
2 is finite and small, while task 1 is impossible to measure,

i.e., σ2
1 →∞. In this case, effort a1 cannot be measured, nor

can we assign specific reward s1 to task 1. Thus, the only
way to provide incentives for task 1 is to reduce the reward
s2 for task 2. If task 1 is a critical work that the principal
cares extremely about, it may be optimal to punish effort on
task 2 (s2 < 0) or give no reward at all for task 2 (s2 = 0).
In this case, zero incentive happens for task 2.

Proposition 2. When efforts are technologically substitutes,
providing incentives for a given task can be implemented either
by increasing the reward for that task or by reducing the rewards
for the other tasks.

The second case when zero incentive may happen is,
when c12 =

√
c11c22, the effort for the two tasks are “perfect

substitutes," i.e., a = a1 + a2. Thus, we have s1 = s2 as
the user must equate the marginal return to effort in various
tasks. In the case of σ2

1 →∞, we thus have s1 = s2 = 0.
The third case when zero incentive happens is that the

user has a deep love for task 1. Then it will be willing
to exert all its effort even in the absence of any financial
reward. This zero incentive case can be found in many
online applications, in which the user receives incentives
through the other user’s praise and self-esteem, instead of
the principal’s reward. In this case, the effort choice of the
user will also equate the marginal nonfinancial benefit with
the marginal cost [16].

3.3.2 Missing Incentive

In some cases, the incentive mechanism cannot provide spe-
cific incentives for some aspects of user’s contribution. Miss-
ing incentive differs from zero incentive in the sense that, in
zero incentive, the principal measures the user’s performance
on the task, but rewards zero. However, the principal neither
takes into consideration of user’s contribution on the task,
nor give any reward in the Missing incentive. One example
in crowdsourcing is the NoiseTube which is designed to

measure and map urban noise pollution using smartphones
sensors such as microphone and GPS. Those data can be
used directly to construct the dynamic noise map. Further-
more, they can be used to support decision and policy
making in different domains such as public health, urban
planning, environmental protection and mobility, which will
bring far more great benefit in the future [24]. Even though
those contributions are important, the principal is unable
to account for such explicit incentive provisions in actual
contracts.

3.3.3 Groupings of Tasks
In the single-user multi-task problem, the performance re-
lated rewards (s1, . . . , sn) serve three purposes: allocat-
ing risk, motivating work, and directing the user’s efforts
among the various tasks [30]. However, a trade-off arises
when these objectives are in conflict with each other. For
example, risk-sharing may be inconsistent with motivating
work, and motivating hard work may distort the user’s
effort allocation across tasks. If we have multiple users, the
principal can group the tasks, which enables lowering the
cost of incentive by using more sensitive measure of actual
performance.

To alleviate those conflicts, we consider grouping tasks
into different jobs that can assign to different users. One
application can be used in Nericell [31], in which varied
road and traffic condition need to be detected. The part of
common traffic detection tasks such as traces, traffic flow
speed, and driving patterns can be grouped and assigned
to users with basic sensing functions, such as GPS and
accelerometer. The other parts of the newly introduced tasks
such as the detection of crashes, potholes and bumps, can
be grouped and assigned to users equipped with a special-
purposed device with 3-axis accelerometers.

Providing incentives for an user in any task incurs a
fixed cost such as the measurement error. Thus, in the two-
dimension case, assigning joint responsibility for any task
would incur two fixed costs, which is unnecessary. If some
tasks are jointly responsible, it is optimal to split them
among the users without affecting either the total effort
required from each user or the total effort allocated to any
task. This grouping of tasks is possible to eliminate some
of the user’s risk, so increasing the utilities of both the
principal and users [15].

The issue of how the tasks should be grouped can be
found in [30]. For the two-dimension case, tasks should
be grouped such that all the hardest-to-monitor tasks are
assigned to user 1 and all the easiest-to-monitor tasks are
assigned to user 2. Separating tasks according to their mea-
surability characteristics allows the principal to give strong
incentives for tasks that are easy to measure without fearing
that the user will substitute efforts away from other harder-
to-measure tasks.

4 SIMULATION RESULTS AND ANALYSIS

In this section, we will first give a detailed analysis of
reward package in the multi-dimensional case. We will
look at how different reward items in the reward package
change by varying the parameters such as the operation cost
coefficients and measurement error covariance. Then, we



2.2 2.4 2.6 2.8 3
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Variance σ
1
2

E
ffo

rt

 

 

Effort 1
Effort 2

(a) Optimal Effort

2.2 2.4 2.6 2.8 3
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Variance σ
2
2

E
ffo

rt

 

 

Effort 1
Effort 2

(b) Optimal Effort

0.52 0.54 0.56 0.58 0.6
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

Covariance σ
12

E
ffo

rt

 

 

Effort 1
Effort 2

(c) Optimal Effort

Variance σ
1
2

R
ew

ar
d

 

 

2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Fixed Salary
Reward 1
Reward 2

(d) Reward package

Variance σ
2
2

R
ew

ar
d

 

 

2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Fixed Salary
Reward 1
Reward 2

(e) Reward package

Covariance σ
ij

R
ew

ar
d

 

 

0.52 0.54 0.56 0.58 0.6
0

0.2

0.4

0.6

0.8

1

1.2 Fixed Salary
Reward 1
Reward 2

(f) Reward package

Fig. 3: The optimal effort and reward package as the measurement error covariance Σ matrix varies.

will conduct a comparison of the principal’s utility among
different incentive mechanisms.

In the simulation set up, we assume that, the reservation
reward of the user w = 0 when not participating in the
crowdsourcing (a = 0). The reason we do not consider
the user’s utility is that, from the optimal reward package
we have derived, no matter how those parameters change,
the user’s utility will remain the same. The optimal reward
package will bring user the utility the same as the reserva-
tion utility −e−ηw, which in our case is −1 as we set w = 0.

4.1 Optimal Reward Package Analysis

4.1.1 Measurement Error
To look into the detail of how the variance and covariance
of measurement error affect the optimal effort and reward
package, we set up the multi-dimensional space as n = 2.
Since the measurement error covariance matrix is symmet-
ric, there are three variables that we can vary: the variances
of measurement error for tasks 1 and 2: σ2

1 and σ2
2 , and the

covariance σ12/σ21. We fix the operation cost matrix C , and
risk averse degree η, and show the results in Fig. 3, where
the first row gives the optimal efforts, and the second row
gives the reward packages.

In Figs. 3(a, b, d, e), we are going to see how the variances
of the measurement error on the performances affect the
user’s selection of efforts for the two tasks and the rewards
offered by the principal. When we vary one variance, the
other one keeps fixed.

Fig. 3a show the measurement error variance σ2
1 for task

1 increases, the optimal effort a1 for task 1 decreases, while
the effort a2 for task 2 shows opposite properties. From

Fig. 3d, we see that as measurement error variance σ2
1 for

task 1 increases, reward package w, the fixed salary t and
reward s1 are decreasing, while the reward for task 2 is
increasing. This result is because the measurement error
becomes more volatile (σ2

1 increases), the user’s benefit from
task 1 decreases (s1 becomes smaller), but the share from
task 2 increases so that the use’s utility can be maintained at
the reservation utility.

Figs. 3(b, e) show similar properties as Figs. 3(a, d). At
this time we fixed σ2

1 but increase σ2
2 , thus Figs. 3(b, e) show

the opposite behavior compare to the previous case. As σ2
2

increases, i.e., the measurement error for task 2 becomes
more volatile, user prefers to exert more effort for task 1
instead of task 2. As we can see from Fig. 3b that, the effort
for task 1 is increasing while effort for task 2 is decreasing.
Similarly, from Fig. 3e we see that the user’s reward from
the task 2 and the fixed salary t are decreasing at the same
time, but the reward from the task 1 goes up.

From Figs. 3(d, e), we have learned that, as the user’s
utility remains the same (i.e., −1) in all situations, the
reward package offered to the user will mostly rely on the
part that is more stable, such as the reward with fixed mea-
surement error variance: reward 2 when σ2

1 increases and
reward 1 when σ2

2 increases. In summary, the reward design
lowers the proportion of bonus from the less predictable
part. By this mechanism, the risk of losing user’s incentive
in all kinds of situations can be canceled.

In Figs. 3(c, f), we investigate the impacts of covariance
σ12/σ21 on the optimal effort and reward package, while
fixing σ2

1 and σ2
2 the same. The simulation results show that,

as the covariance σ12/σ21 increases, the optimal effort a and
reward package w are all decreasing. Since we assign the



same operation cost for tasks 1 and 2, the optimal effort of
them overlaps in Fig. 3c. Meanwhile, from Fig. 3f we see
that, within the reward package, reward 1 and reward 2 are
decreasing except the fixed salary t. When the relationship
between the performance observed by the principal and the
effort exerted by the user becomes more volatile, it is harder
to predict them to identify an effort. Thus, the user becomes
more reluctant to exert effort, and the principal receives less
utility and rewards the user less.

4.1.2 Operation Cost
To see how the operation cost coefficients affect the opti-
mal effort and reward package, we also set up the multi-
dimensional space as n = 2. The operation cost coefficient
is also a symmetric matrix, and we can vary three of the
elements: task-specific operation cost coefficient for task 1
and 2: c11 and c22, and the technologically substitution
coefficient c12/c21. We fix the measurement error covariance
matrix Σ, and risk averse degree η, and show the results in
Fig. 4, where the first row gives the optimal efforts, and
the second row gives the reward packages as what we have
done in Fig. 3.

Figs. 4(a, b, d, e) show how the task-specific operation
cost affects the user’s effort choice for the two tasks and the
reward items in reward package. We keep one operation
cost coefficient fixed when vary the other operation cost
coefficient.

In Fig. 4a, we see that as the operation cost coefficient
c11 for task 1 increases, the optimal effort a1 for task 1
decreases,but effort a2 for task 2 increases. In Fig. 4d, reward
package w and reward s1 are decreasing, while the reward
for task 2 and fixed salary t are increasing. This result is
intuitive, since if exerting effort for task 1 encounters more
operation cost, (c11 increases), the user will be more likely
to switch effort to task 2, which consumes less operation.

Figs. 4(b, e) show similar properties as Figs. 4(a, d). At
this time we fixed c11 but increase c22, thus Figs. 4(b, e)
shows the opposite behavior compared to the previous case.
As c22 increases, i.e., the operation cost for task 2 increases,
user prefers to exert more effort for task 1 instead of task 2.
We can see from Fig. 4b that the effort for task 1 is increasing
while effort for task 2 is decreasing. Similarly, from Fig. 4e
we see that the user’s reward from the task 2 is decreasing.
While the reward from the task 1 and the fixed salary t go
up at the same time.

From both Fig. 4d and Fig. 4e, we observe that, the user
is more likely to exert effort on the task that incurs less
operation cost, and thus the reward package will reward
more on the task with a smaller operation cost coefficient.
Thus, we see that the principal reward 2 when c11 increases
and reward 1 when c22 increases.

In Figs. 4(c, f), we investigate the impacts of techno-
logically substitution c12/c21 on the optimal effort and re-
ward package, while fixing the task specific operation cost
coefficients c11 and c22 the same and unchanged. As the
technologically substitution c12/c21 increases, the optimal
effort a and reward package w are all decreasing. Since we
assign the same task-specific cost coefficients for both tasks,
the optimal effort of them two overlap in Fig. 4c. Meanwhile,
from Fig. 4f we see that, reward s1 and reward s2 are both
decreasing except the fixed salary t. This is due to less efforts

are exerted from the user, less performance related rewards
will be offered. However, in order to keep user incentivized,
the principal has to increase the fixed salary t, so that the
user’s utility is guaranteed.

4.2 Incentive Mechanism Comparison

In the previous section, we have solved the optimal reward
package when the measurement error is stochastic depen-
dent and effort is technologically dependent. As this multi-
dimensional case is the most general case in reality, we name
this mechanism by General. In addition, we also obtained
the optimal reward package when the measurement error
and effort are independent, and thus we name it by Inde-
pendent. We also have a third one called Single Bonus that is
the reward package obtained in the one dimensional case.
In this one-dimensional case, we can regard the principal
rewards user on only one task. In this subsection, we will
propose another three incentive mechanisms as the com-
parisons with the previous two. Those three mechanisms
are generally based on our current model, while they are
different from each other in the construction of their reward
packages.

The first two are special cases of the General: one is
stochastic independent but technologically dependent, the
other one is technologically independent but stochastic de-
pendent, and are named by Stochastic Independent and Tech-
nologically Independent, respectively. The last one is called
Opening Reward, that is the reward package only contains a
fixed salary t. We can regard this mechanism as a company
which will offer each user an opening reward as the Karma
which is mentioned in Section I. But this Opening Reward
mechanism does not care about user’s future performance.

4.2.1 Stochastic Independent

When tasks are stochastic independent, the co-variances of
the error measurement are zero, and we have σij = 0 and
Σ becomes a diagonal matrix. The optimal performance
related rewards for each task in (26) is simplified to

s∗ = (I + ηCDiag(Σ))−1β, (34)

where Diag(Σ) is the a n× n diagonal matrix with element
σ2
i , ∀i ∈ {1, . . . , n} on the diagonal. Based on a = C−1s

and (29), we can easily obtain the user’s optimal choice of
effort and the fixed salary t in this stochastic independent
but technologically dependent package.

4.2.2 Technologically Independent

When tasks are technologically independent, the cross-
partials of the cost function are zero, i.e., cij = 0 and C
becomes a diagonal matrix. The optimal incentive contract
for each task in (26) simplifies to

s∗ = (I + ηDiag(C)Σ)−1β, (35)

where Diag(C) is the a n× n diagonal matrix with element
cii, ∀i ∈ {1, . . . , n} on the diagonal. Based on a = C−1s and
(29), we can easily obtain the user’s optimal choice of effort
and the fixed salary t in this technologically independent
but stochastic dependent package.
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Fig. 4: The optimal effort and reward package as the operation cost coefficient C matrix varies.

4.2.3 Opening Reward
When no performance related reward is offered, the prob-
lem is formulated as

max
a,t

βTa− t, (36)

s.t. (a) a = arg max
a

[t− 1

2
aTCa−−1

2
ηsTΣs],

(b) t− 1

2
aTCa−−1

2
ηsTΣs = w.

The optimal effort a∗ and opening reward t∗, respectively,
have the form of

a∗ = C−1β, (37)

t∗ = w +
1

2
aTCa = w +

1

2
(C−1)TβTβ. (38)

4.2.4 Comparisons
In Fig. 5, we compare the principal’s utility from the six
incentive mechanisms as we vary the task-specific operation
cost coefficient cii. From the simulation results we see that,
as the cost coefficient cii increases, the principal’s utility
is decreasing as well. The reason for this phenomenon is
that larger cost coefficient cii means more operation cost
when implying an effort. Therefore, the user is less likely
to exert effort in the crowdsourcing activity. With less data
are collected from the users, the principal’s utility will
certainly decrease. In addition, from Fig. 5, we see that the
principal obtains the largest utility in the Independent case.
Followed by the Opening Reward, Stochastic Independent, and
Technologically Independent, the General case proposed by us
brings the fifth highest utility to the principal, while the
Single Bonus gives the least utility.
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Fig. 5: The principal’s utility as the operation cost coefficient
cii varies.

In Fig. 6, we analyze the impact of user’s risk averse
degree η on the principal’s utility. As the principal’s utility
V = a − t in the Opening Reward is independent of the risk
averse degree η, we cannot see any change in the principal’s
utility. For the other five mechanisms, we see that the prin-
cipal’s utility is decreasing as the user’s risk averse degree
η increases. This result is intuitive as a larger η means the
user becomes more conservative and sensitive to risk, thus
less likely to participate in. With less effort obtained from
the user, the principal’s utility will certainly decrease. From
Fig. 6 we also obtains the similar ranking of the principal’s
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Fig. 6: The principal’s utility as risk averse degree η varies.

utility as in the previous figure: the Independent case brings
higher utility than the Stochastic Independent, Technologically
Independent, and General one, and the Single Bonus one brings
the smallest utility for the principal.

In Fig. 7, we increase the variance σ2
i to see how the

principal’s utility varies. Similar to the previous case, the
principal’s utility V = a − t in the Opening Reward is
independent of the covariance matrix. Thus, we cannot
see any change of the principal’s utility. For the other
mechanisms, the principal’s utility is decreasing with the
variance, which is in accordance with our conclusion in
the previous section. The variance σ2

i of measurement error
denotes the relationship between effort levels exerted by the
user and the performance observed by the principal. As σ2

i

increases, it indicates a weaker relationship between effort
levels and the expected reward achieved. As a result, the
users are likely to exert lower levels of effort with increases
in uncertainty, and thus a lower cost of participation. With
the decrease of optimal effort, less data is obtained from the
user, the principal’s utility will certainly decrease. From Fig.
7 we also obtain the similar ranking of the principal’s utility
as in the previous figure: the Independent case brings higher
utility than Stochastic Independent, followed by Technologically
Independent and General one, the Single Bonus one brings the
lowest utility for the principal.

The reason for the performance ranking of the six mech-
anisms in Fig. 5, Fig. 6, and Fig. 7 is as follows. The
Independent mechanism is the ideal case of the General multi-
dimension case. As less measurement cost is occurred when
predicting the outcome and less operation cost is encoun-
tered due to effort substitution, a higher utility is obtained
than the other mechanisms. The Stochastic Independent and
Technologically Independent are partial independent cases of
the General multi-dimension one, thus, the principal’s util-
ity lies between the Independent and General mechanisms.
But as we have assigned larger values for the covariance
matrix of the the measurement error than the operation
cost coefficient matrix, more effort will be exerted in the
Stochastic Independent than in the Technologically Independent
mechanism. Therefore, the principal’s utility is higher in the
Stochastic Independent than in the Technologically Independent
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Fig. 7: The principal’s utility as measurement error variance
σ2
i varies.

case, while the Single Bonus only reward user with only
one dimension evaluation. As a result, the users have less
incentive to exert more effort in other tasks. In return, less
utility is obtained by the principal. For the result of the
Opening Reward case, it seems unreasonable at the first sight,
as it brings the principal the highest utility than the other
three mechanisms. While we notice that Opening Reward is
a “once-for-all” deal which does not provide continuous
incentives for the users, i.e., after the users have fulfilled
their duty and receive the reward, they are more likely to
stop participating in crowdsourcing.

5 CONCLUSIONS

In this paper, we have investigated the problem of providing
incentives for users to participate in the crowdsourcing
by rewarding user from multi-dimension evaluations. We
solve the principal’s utility maximization problem in both
one-dimension and multi-dimension cases. Furthermore, we
give analysis of special scenario of the multi-dimension
model. Finally, we use the numerical results to analyze the
optimal reward package by varying different parameters. In
addition, we compare the principals’ utility under the six
different incentive mechanisms, and show that the princi-
pal’s utility deteriorates with large operation cost coefficient,
higher risk aversion of users, and large measurement error
variance.

APPENDIX A
PROOF OF PROPOSITION 1

We have the user’s utility function in (6) as u =
− exp{−η[w − ψ(a)]}. From Section II, we know that w ∼
N(t + sTa, sTΣs). As the user incurs an operation cost ψ,
the actual income w′ has the distribution

w′ = w − ψ(a) ∼ N(t+ sTa− 1

2
aTCa, sTΣs). (39)



Let µ denotes t + sTa − 1
2a
TCa, and σ2 denotes sTΣs, we

have w′ ∼ N(µ, σ2) for simplification. The corresponding
density function for w′ is

f(w′) =
1

σ
√

2π
exp

[
− (w′ − µ)2

2σ2

]
. (40)

The corresponding expected exponential utility function is

E[u(w′)] = −E[exp(−ηw′)] (41)

= −
∫ +∞

−∞
exp(−ηw′)f(w′)dw′

= −
∫ +∞

−∞
exp(−ηw′) 1

σ
√

2π
exp

[
− (w′ − µ)2

2σ2

]
dw′

= −
∫ +∞

−∞

1

σ
√

2π
exp

[
−ηw′ − (w′ − µ)2

2σ2

]
dw′.

For the exponential part, we see that −ηw′ − (w′−µ)2
2σ2

= −ηw′ − (w′ − µ)2

2σ2
+ ηµ− ηµ+

η2σ2

2
− η2σ2

2
(42)

= −
[
ηw′ +

(w′ − µ)2

2σ2
− ηµ+

η2σ2

2

]
− ηµ+

η2σ2

2

= −1

2

[
(w′ − µ)2

σ2
+ 2η(w − µ) + η2σ2

]
− ηµ+

η2σ2

2

= − 1

2σ2
[(w′ − µ) + ησ2]2 − ηµ+

η2σ2

2
.

Thus, the expected exponential utility function E[u(w′)]
becomes

= −
∫ +∞

−∞

1

σ
√

2π
exp

[
−ηw′ − (w′ − µ)2

2σ2

]
dw′ (43)

= −
∫ +∞

−∞

1

σ
√

2π
exp[− 1

2σ2
[(w′ − µ) + ησ2]2 − ηµ+

η2σ2

2
]dw′

= − exp

(
−ηµ+

η2σ2

2

)∫ +∞

−∞

1

σ
√

2π
exp[− 1

2σ2
[(w′ − µ) + ησ2]2]dw′.

As the integration part is the density function of a ran-
dom variable following a normal distribution with a mean
of µ− ηs2 and variance σ2, we have∫ +∞

−∞

1

σ
√

2π
exp

[
− 1

2σ2
[(w′ − µ) + ησ2]2

]
dw′ = 1 (44)

Therefore, we have

E[u(w′)] = − exp

(
−ηµ+

η2σ2

2

)
= − exp

[
−η
(
µ− ησ2

2

)]
.

(45)

We rewrite the equation as E[u(w′)] = exp(−ηCE),
whereCE denotes the certainty equivalent of the user. From
the original definition of the user’s utility function, we have
the user’s certainty equivalent as

CE = µ− ησ2

2
(46)

= t+ sTa− 1

2
aTCa− 1

2
ηsTΣs.

From the derivation, we see that the certainty equivalent is a
monotonic transformation of the user’s expected exponen-
tial utility function u. Therefore, CE represents the same
preference as E[u].
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