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This paper studies price competition in a heterogeneous cloud market formed by public providers and a
cloud broker, all of which are also known as cloud service providers (CSPs). We formulate the price
competition between CSPs as a two-stage noncooperative game. In stage I, in which CSPs set their service
prices to maximize their revenues, we model the pricing game using the noncooperative static game. We
provide sufficient conditions for the existence and uniqueness of Nash equilibrium prices, which can be
obtained using an iterative algorithm. The convergence properties of the iterative algorithm are char-
acterized using the contract mapping theorem. In stage II, given the prices set by CSPs, cloud users can
select the services that provide them the best payoff in terms of performance (i.e., delay) and price. We
apply an evolutionary game to study the evolution and dynamic behavior of cloud users. Furthermore,
we use the Wardrop equilibrium and replicator dynamics to determine the equilibrium and its con-
vergence properties of the service selection game. To attract users to the equilibrium, we implement the
service selection algorithms using population evolution and reinforcement learning approaches. Nu-
merical results illustrate that our game models can provide comprehensive understanding of the het-
erogeneous CSPs market and service selection in cloud computing.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, cloud computing has become more and more popular
in large-scale computing due to its ability to share data and
computations over a network of scalable nodes. The number of
infrastructure as a service (IaaS) providers is increasing quickly as
the cloud computing market grows. Hence, cloud users have to
deal with many different service types, pricing schemes and cloud
interfaces. In the beginning of cloud deployment, an IaaS public
cloud provider, e.g., Amazon, Google, Microsoft, which we call a
public provider (PP), dominates the market. However, the cloud
computing market trend shows an increasing market share of the
multi-cloud or federated clouds as IaaS providers by a cloud broker
(CB) (Yaw et al., 2015; Panda et al., 2014; Panda and Jana, 2015;
Manvi and Shyam, 2014). The emergence of this paradigm is forming
a heterogeneous market leading to the complicated economic mar-
ketplace. The performance delivered by IaaS providers to cloud user
yenth@khu.ac.kr (N.H. Tran),
S. Hong),
n).
depends on both the resource allocation (as traditional issues) and
the strategic incentives that come from the multi-tiered economic
interactions that consists of two components as follows. The first
interaction is competition among IaaS providers for cloud users and
among IaaS providers. The second interaction is between cloud users
who are both price-sensitive and performance-sensitive when
choosing an IaaS provider. Thus, the precise pricing model con-
sidered in a heterogeneous market is significant. However, to the
best of our knowledge, till now no research has considered both of
pricing method and user service selection.

In this paper, by incorporating the heterogeneity of CSPs (i.e.,
CB and PP) and the dynamical behavior of users, we study price
competition in a heterogeneous CSP market in cloud computing.
We focus on the pricing problem of CSPs, who compete with each
other by setting service prices to maximize their revenues. At the
same time, we consider a fundamental question of cloud users, i.e.,
from which CSP it is better for a cloud user to select the cloud
service. By tackling this problem, our contributions can be pre-
sented as follows.

� We propose a game theoretical model in a heterogeneous CSP
market in which there are two stages of competition. In stage I,
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on the CSP side, we formulate the competition among CSPs for
selling service opportunities as a noncooperative game, where
each CSP can set a service price such that its revenue is max-
imized. We use M M/ /1 and ∞M M/ / queue models to show
correlations among the expected task finishing times, resource
capacity, and the request rates (from cloud users to the CB and
PP, respectively). To the best of our knowledge, this is the first
study that discusses heterogeneous CSP competition queueing
models (M M/ /1 and ∞M M/ / ). Since the pricing strategy of a CSP
depends on its competitors, we use the game theoretic ap-
proach to study the strategic situation in the noncooperative
static game (NSG). We provide the sufficient conditions for ex-
istence and uniqueness of closed form Nash equilibrium prices.
Furthermore, we use an iterative algorithm to determine the
Nash equilibrium in a distributed manner.

� In stage II, on the cloud user side, given prices set by CSPs, ra-
tional cloud users can select a service from a CSP that provides
them the best payoff in terms of performance (i.e. delay) and
price. We use the Wardrop equilibrium to derive a steady-state
equilibrium achievable by cloud users in the service selection
game. Wardrops principles are used extensively in modeling the
traffic distribution of communication networks and transpor-
tation networks and has received significant attention in the
algorithmic game theory community (Roughgarden and Tardos,
2002). We further focus on modeling the dynamic behavior of
cloud users using the evolutionary game approach (Sandholm,
2010), which characterizes the strategic interactions among a
large number of users, whose behaviors are modeled as a
dynamic adjustment process. Evolutionary game theory was
first used in biology to study the change of animal populations,
and then later applied in economics to model human behaviors.
It is most useful to understand how a large population of users
converges to Nash equilibria in a dynamic system. We use
replicator dynamics (Sandholm, 2010), which are expressed as a
set of differential equations, to model the evolution of the cloud
users since such cloud users adapt their service selection based
on the observed system state. We then analyze equilibrium and
convergence properties of the proposed game. In the case of
perturbation in the evolutionary game, we use a Markov chain
to investigate behavior in the cloud user society over very long
time spans. To attract cloud users to the equilibrium, we
implement service selection algorithms through population
evolution and reinforcement learning approaches.

The remainder of this paper is organized as follows. Section 2
discusses the related work. Section 3 introduces the system
models. In Section 4, we present pricing competition in a duopoly
heterogeneous CSP market. Section 5 presents the dynamic service
selection game of cloud users. Section 6 shows the numerical
results. Section 7 presents the multiple CSP scenario. Section 8
draws the conclusions.
2. Related work

We first review the most notable works on resource allocation
and pricing in cloud systems. Then, we discuss relevant works that
use game theory to study price competition and user behaviors.

Considering prices charged by cloud providers, the authors in
Hong et al. (2011) and Tsakalozos et al. (2011) used dynamic
programming and microeconomics, respectively, to solve the re-
source allocation problems for cloud users. Xu and Li (1952) stu-
died dynamic cloud pricing using a proposed revenue manage-
ment framework. In Kantere et al. (2011), the authors proposed a
price-demand model for the cloud cache and found the optimal
price that maximizes the cloud provider's profit. Auction is one of
the pricing schemes widely applied to solve the resource alloca-
tion problems (Zhang et al., 2013). Teng and Magoules (2010) and
Mihailescu and Teo (2010b) applied auction mechanisms to find
optimal prices in the cloud, in which cloud users had budgetary
and deadline constraints, respectively. In Lee et al. (2013), based on
a combinatorial double auction, the authors proposed a real-time
group auction system that improves resource efficiency and
monetary benefits for both users and providers in the cloud in-
stance market. Qiu et al. (2014) applied a two-stage Stackelberg
game where one broker is the leader and the private clouds are the
followers. However, in the heterogeneous cloud computing mar-
ket, we assume that the cloud brokers and the public cloud pro-
viders play the same role and compete each other. Thus, we resort
to a limiting regime (a non-cooperative static game) to be able to
provide analytical results.

Nevertheless, most of these works focused on provider pricing
and the responses of cloud users via their demand functions. In
this paper, we focus on the pricing mechanisms and their impacts
on the equilibrium behaviors of users in a strategic queueing
system, where arriving users can take the delay and service price
into account to make their service selection strategically, which
can be traced back from the work of Naor (1969), Edelson and
Hilderbrand (1975), Stidham (2009), and Hassin and Haviv (2003).
Several works have addressed this paradigm of wireless network,
including Do et al. (2012a, 2012b, 2014), Tran et al. (2013), and Nan
et al. (2012). In the paradigm of cloud computing, Feng et al. (2014)
and Anselmi et al. (2011) examine the optimal prices that can be
determined in a competitive environment with more than one
cloud provider. However, they only consider the market formed by
homogeneous IaaS providers, all of which use the same M M/ /1
queue to derive the expected delay of cloud users. Feng et al.
(2014) and Anselmi et al. (2011) do not consider the dynamic
behavior of users in such a multiple CSP scenario. Recent works
have considered evolutionary games to study user behavior in
cognitive radio and heterogeneous wireless networks (Niyato and
Hossain, 2009; Niyato et al., 2009; Elias et al., 2013). However, no
works use them for cloud computing.

There are similar pricing in the literature for cloud market.
Ardagna et al. (2013) consider a two-tier model capturing the in-
teraction between SaaSs and a single IaaS and study the existence
and efficiency of equilibrium allocations. Similarly, Anselmi et al.
(2011), Feng and Li (2013) and Nan et al. (2014) considered two-
tier models capturing the interaction between users and SaaSs or
between SaaSs and PaaSs/IaaSs, and studied the existence and
efficiency of equilibrium allocations. A typical approach to solve a
two-tier pricing game is the Stackelberg game (Nan et al., 2014;
Wahab et al., 2016). Here, we also apply a two-stage Stackelberg
game, which is widely used in wireless and cloud computing
services (Nan et al., 2014; Niyato et al., 2009). Feng and Li (2013)
studied price competition between multiple IaaS cloud providers
in a homogeneous market but with different resource capacities.
The authors applied an M M/ /1 queue to capture correlations
among the expected task finishing times, the IaaS provider re-
source capacity and the request rates from users. Yet, the context
of this paper is price competition and user service selection in a
heterogeneous cloud computing environment, which has a dif-
ferent system model. Firstly, in a heterogeneous market, we use an
M M/ /1 queue for a public IaaS provider and an ∞M M/ / queue for
multi-cloud, and such heterogeneity in IaaS provider resource
capacities (i.e., service-level agreements) makes our analyses
much more challenging. Secondly, the model considered in this
paper is to capture the two-tier competing dynamics between
users and IaaS providers simultaneously.
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3. The system model

This paper aims to introduce and analyze a stylized model
capturing the multi-tiered interaction between users and cloud
providers in a manner that exposes the interplay of congestion,
pricing, and performance issues. To accomplish this, we introduce
a novel two-tier model for the heterogeneous cloud computing
market. This model considers the strategic interaction between
users and IaaS provider (the first and second tiers), within each
tier there is also competition among users and IaaS providers,
respectively. The details of the model are provided by three key
features: (i) IaaS providers compete by strategically determining
their price in order to maximize profit, which depends on the
number of users they attract; (ii) users strategically determine
which IaaS provider to use depending on a combination of per-
formance and price; (iii) the performance experienced by the
users is affected by the congestion of the resources procured at the
IaaS chosen by the users, and that this congestion depends only on
total traffic of users to the IaaS. We first introduce preliminaries of
the system model. We then present the CB and PP models.

3.1. Preliminaries

The multi-cloud model can integrate resources from different
IaaS providers, which increases scalability/reliability and reduces
cost, while access to the resources is transparent to users (Toosi
et al., 2012; Mihailescu and Teo, 2010a). In the multi-cloud archi-
tecture, illustrated in Fig. 1, a cloud broker (CB) is essential to
transform the cloud computing market into a commodity-like
service (Tordsson et al., 2012). A CB offers a provisioner that ana-
lyzes the workload, schedules Virtual Machine (VM) placement
among multiple clouds providers and optimizes deployments
(Calheiros et al., 2011). Moreover, the VMmanager in the CB can be
used to provide a uniform interface with VM management, in-
dependent of the particular cloud provider technology (Tordsson
et al., 2012). Currently, an IaaS PP (e.g., Amazon) operates as a
standalone IaaS cloud service provider (CSP) (Fig. 2(a)). However,
in a multi-cloud model (Fig. 2(b)), a CB offers cloud services to
users as a CSP (Hossain et al., 2013). The CB (a third party) acts as a
mediator between the cloud user and the IaaS provider. Cloud
users buy resources from the CB instead of the cloud provider in
order to obtain additional benefit (e.g., compensation) (Hossain
et al., 2013). The cloud brokerage model can be used to offer a
commendable pricing mechanism that considers the least ex-
pensive service for a cloud user, as well as more profit for CSPs
(Hossain et al., 2013).

A heterogeneous CSP market consists of the PP and CB offering
services to the same pool of cloud users. The cloud users arrive
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cloud users will deviate to choose the service from another CSP.
Therefore, each CSP must individually set the price carefully so
that its revenue is maximized. Therefore, the game-theoretic for-
mulation is a natural solution for the competition between CSPs
due to the mutually opposing interest of CSPs. In this paper, we
use a noncooperative static game (NSG) (Osborne, 1994) to model
the pricing competition between CSPs in stage I. In stage II, given
the prices set by CSPs, cloud users select the CSP to join. If many
cloud users choose a cloud service provided by the same CSP, the
corresponding service becomes congested, which may result in
performance degradation (i.e., increased the delay). As a result,
cloud users will evolve to choose a CSP offering lower price and
better performance. The evolution of a cloud user will stop when
the cost (the service price plus the delay cost) becomes identical to
the average cost of all cloud users. Thus, we formulate the service
selection process of cloud users as an evolutionary game (Sand-
holm, 2010). Here, we mainly consider a heterogeneous duopoly
market that has one PP and one CB. We then consider the multiple
CSP scenario in Section 6. Let us denote by λ1 the overall cloud
user arrival rate at the CB and by λ2 the rate of cloud users at the
PP, so that λ λ λ= +1 2.

3.2. Cloud broker model

The average cost incurred by a cloud user consists of two
components: (i) the service price p1 of the CB and (ii) the average
delay cost. We assume that the CB always has a sufficient number
of servers to serve the demand of cloud users. As illustrated in
Fig. 1, whenever an arriving cloud user decides to request the
service from the CB, the admission control unit sends the accepted
request to the provisoner. The provisoner finds an allocation of VM
among different cloud providers that optimizes the user criteria
and meets the placement constraints. The VM manager can pro-
vide a unified management interface for operations, e.g., to deploy,
monitor and terminate VMs, with multiple IaaS providers. The CB
is modeled as an ∞M M/ / queue, serving a common pool of po-
tential cloud users with infinite servers, which combines the re-
source capacity of multiple cloud providers operated by the VM
manager. The ∞M M/ / queuing model has been adopted by a
number of existing papers that analyzed data center or cloud
provider operations. In Duffield and Whitt (1997), the authors
represent the large multi-server system as an ∞M G/ / system. In
Stolyar (2012), the authors solve the “packing” of VMs in the
physical host machines problem in a network cloud having an
infinite server system. We assume that the virtual resource capa-
city of the CB is represented by its service rate μ (Feng et al., 2014;
Khazaei et al., 2012; Rao et al., 2010). Let α be the delay cost per
unit time (i.e., α represents user urgency). The expected cost when
acquiring the multi-cloud service from the CB is thus given by

α
μ

= +
( )

C p .
1

1 1

The revenue of the CB corresponds to the total revenue obtained
by pricing users. As a consequence, the CB utility function is ex-
pressed as follows:

λ= ( )U p . 21 1 1

3.3. Public provider model

If a cloud user selects a cloud service of the PP, it joins a queue
of cloud users who have chosen the same PP. This queue is used in
order to model the delay incurred when a few cloud users wish to
use the same cloud infrastructure of the PP. Here, the PP system is
modeled by an M M/ /1 queue, serving a common pool of potential
cloud users with one “virtual” server. In queueing theory, the
multi-server system can be modeled as G G m/ / (i.e., general arrival
distribution and general service rate distribution) (Khazaei, 1975)
or +M G m m r/ / / (i.e., exponential arrival distribution and general
service rate distribution with a finite buffer) (Khazaei et al., 2012).
However, since the analysis will be very complex in the general
model, researchers have to approximate the general model to
solvable models in order to proceed with analysis and prediction.
Thus, the M M/ /1queuing model has been used in cloud computing
literature to offer closed form results (Feng et al., 2014; Gupta
et al., 2010; Yu et al., 2014).

The PP system is modeled as an M M/ /1 queue with a service
rate μ. We assume that λ μ< for the queue stable condition. Here,
we mainly consider homogenous service rates where the service
rates of the PP and the CB are the same (i.e., μ). The main reason is
that we focus on the competition of CSPs at the same class of
service or similar configurations (e.g., consider two CSPs, Amazon
and Google: both Amazon m1.medium and Google n1-standard1
have one virtual CPU and 3.75 GB RAM; Amazon c3.large and
Google n1-standard-8 have eight virtual CPUs and 30 GB RAM).
Thus, the service rates of CSPs are approximately equal at the same
class of service. Based on queuing theory (Khazaei, 1975), the ex-
pected cost when acquiring the service from the PP is thus given
by

α
μ λ

=
−

+
( )

C p .
3

2
2

2

The PP utility function is expressed as follows:

λ= ( )U p . 42 2 2

4. Pricing competition in heterogeneous duopoly market

Due to the complexity of the model, we need to consider a
limiting regime in order to be able to provide analytical results.
There are monopoly market (one service provider dominates all
the market), duopoly market (two service providers share the
market), and oligopoly market (more than two service providers
share the market). Motivated by the huge and growing number of
IaaS providers, the limiting regime we consider is the duopoly
market as a starting point. In this setting, we can attain an ana-
lytical characterization of the interacting markets which yield in-
teresting qualitative insights.

In this section, we derive the equilibrium points, namely: (i) the
equilibrium rates λ λ( ),e e

1 2 at which cloud users join the CB and PP,
respectively; (ii) the equilibrium prices set by the CB and PP in a
heterogeneous duopoly market (two CSPs share a market). This
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paper studies the duopoly scenario for the ease of analysis. How-
ever, the duopoly scenario can still provide insights into pricing
and user dynamics of the heterogeneous CSPs market. The analysis
introduced in Sections 4 and 5 can be similarly extended to the
multiple PPs and CBs scenario in Section 6 at the expense of the
increased complexity.

4.1. Wardrop equilibrium of service selection game

Given prices ( )p p,1 2 , the equilibrium rates λ λ( ),e e
1 2 are achieved

by cloud users in the service selection game, in which a large
number of cloud users individually determine CSPs, they should
buy the cloud service. In the service selection game, there are two
conditions: first, cloud users individually minimize the perceived
cost, which is expressed as C1 in (1) if they choose the CB and C2 in
(3) if they choose the PP; second, at the equilibrium point, the cost
C1 is equal to the cost C2 if both CSPs have a non-zero arrival rate of
cloud users. The above two conditions satisfy the two Wardrop's
principles (Wardrop, 1952; Roughgarden and Tardos, 2002), that
are: the total costs perceived by users on all used services are
equal, and the average delay/cost is minimum. Thus, the Wardrop
equilibrium is defined as follows.

Definition 4.1. The pair of arrival rates λ λ( ),e e
1 2 is a Wardrop

equilibrium if and only if there exist >C 0 such that:

λ λ( ) = > = ( )C C i, if 0, 1, 2, 5i i
e

i
e

λ λ( ) > = = ( )C C i, if 0, 1, 2, 6i i
e

i
e

λ λ λ+ = ( ). 7e e
1 2

At the Wardrop equilibrium, if = =C C C1 2 , then we have

α
μ

α
μ λ

+ =
−

+
( )

p p .
8e1

2
2

We can compute the equilibrium cloud user request λ2e for the PP
as a function of the prices set by both the CB and PP as follows:

λ
μ

μ α
=

( − )
( − ) + ( )

p p
p p

,
9

e
2

1 2
2

1 2

with λ λ< <0 e
2 . Then, the equilibrium cloud user request λ1e sent

to the CB is as follows:

λ λ λ= − ( ). 10e e
1 2

We observe that, if ≤p p1 2, λ λ λ( = = ), 0e e
1 2 is the trivial and unique

Wardrop equilibrium. To that end, we assume that >p p1 2 for
nontrivial results.

4.2. Noncooperative static game

We consider a noncooperative static game (Osborne, 1994) in
which the CB and PP compete with each other by setting the price
simultaneously to maximize their utilities. Then, given a particular
service price p1 of the CB, the PP will determine the best response
service price p2, and vice versa. Motivated by the concept of the
Nash equilibrium, we define the equilibrium prices ( )p p,ns ns

1 2 , from
which no CSP trying to maximize its own utility has any incentive
to deviate unilaterally. The Nash equilibrium is obtained using the
best response function, which is the best strategy of one CSP given
the strategies of other CSPs. To achieve a nontrivial Wardrop
equilibrium arrival rate, we focus on a region >p p1 2 while de-
riving the Nash equilibrium prices. Given a service price p2, the
best response function (or the reaction curve) ( )BR p1 2 of the CB can
be expressed in terms of p2 as follows:
( ) = ( )
( )≥ >

BR p U p parg max , .
11p p p

1 2 1 1 2
max 1 2

Here, we assume that pmax is the maximum price CSPs can set for
all users. The reason is that, if the price offered by CSPs is too high,
users will prefer to build their own internal server cluster rather
than to buy cloud services (i.e., VM) from CSPs. Similarly, given a
price p2, the best response function ( )BR p1 2 is as follows:

( ) = ( )
( )> ≥

BR p U p parg max , .
12p p

2 1
0

2 1 2
1 2

For the proposed noncooperative static game, the Nash equili-
brium is defined as follows.

Definition 4.2. The prices ( )p p,ns ns
1 2 are a Nash equilibrium price

for the proposed noncooperative static game if and only if
( = ( ) = ( ))p BR p p BR p,ns ns ns ns

1 1 2 2 2 1 .

The existence of the Nash equilibrium price implies that two
reaction curves ( )BR p2 1 and ( )BR p1 2 have intersection points. Let us
define:

α
μ λ

ρ λ
μ

α
μ

≜
−

≜ ≜
( )

a d, , and .
13

According to the second-order condition (Boyd and Vanden-
berghe, 2004), we characterize the convexity of utility functions

( )U p p,1 1 2 and ( )U p p,2 1 2 as shown in Lemma 4.1.

Lemma 4.1. Given a price p1, ( )U p p,2 1 2 is strictly concave in ( )p0, 1
w.r.t. p2. Given a price p2, if <p d2 , ( )U p p,1 1 2 is strictly concave;
otherwise ( )U p p,1 1 2 is convex in ( )p p, max2 w.r.t. p1.

To find the intersection points of ( )BR p2 1 and ( )BR p1 2 , we solve
simultaneously two CSP revenue maximization problems as fol-
lows:

( )
( )≥ ≥

U p parg max , ,
14p p 0

1 1 2
max 1

( )
( )> ≥

U p parg max , ,
15p p 0

2 1 2
1 2

where the utilities ( )U p p,1 1 2 and ( )U p p,2 1 2 , in which the equili-
brium arrival rates (λ λ,e e

1 2 ) are defined by the Wardrop equilibrium
as (9) and (10), are given as follows:

⎡
⎣⎢

⎤
⎦⎥λ λ

μ
μ α

( ) = = −
( − )

( − ) + ( )
U p p p p

p p
p p

, ,
16

e
1 1 2 1 1 1

1 2
2

1 2

λ
μ

μ α
( ) = =

( − )
( − ) + ( )

U p p p p
p p

p p
, .

17
e

2 1 2 2 2 2
1 2

2

1 2

By solving the first-order condition =∂
∂ 0U
p

1

1
and =∂

∂ 0U
p

2

2
simulta-

neously, we obtain

⎧
⎨⎪

⎩⎪

α
μ λ

= − + ( − )
−

= − + + ( )

p p d d p

p p d d p d

,

. 18

1 2 2

2 1
2

1

Finally, we obtain

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )

( )
=

− − + +

( + )

= −
+ + +

( + ) ( )

p
d a ad d a a d

a d

p d
d a d a a d

a d

2 2 5 4

2
,

3 2 5 4

2
.

19

e

e

1

2 2 3/2

2

2

2

2

Combing the conditions from the Wardrop and Nash equilibrium,
we have the sufficient condition for the existence of a Nash
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equilibrium, as summarized in Theorem 4.1.

Theorem 4.1. If there exists a pair ( )⁎ ⁎p p,1 2 such that:

> > > ( )⁎ ⁎p p p 0, 20max 1 2

λ λ
μ

μ α
> =

( − )
( − ) +

>
( )

⁎ ⁎

⁎ ⁎
p p

p p
0,

21
e

2
1 2

2

1 2

( ) ≥ ( ) ∀ ≥ > ( )⁎ ⁎ ⁎ ⁎U p p U p p p p p, , , , 22max1 1 2 1 1 2 1 2

( ) ≥ ( ) ∀ > > ( )⁎ ⁎ ⁎ ⁎U p p U p p p p, , , 0, 232 1 2 2 1 2 1 2

then ( )⁎ ⁎p p,1 2 is an interior Nash equilibrium.

Proof. Condition (20) guarantees that ( )⁎ ⁎p p,1 2 in the feasible re-
gion. Condition (21) is obtained directly by the Wardrop equili-
brium. Conditions (22) and (23) guarantee that ( )⁎ ⁎p p,1 2 is an in-
terior Nash equilibrium. □

Having results from Theorem 4.1, the sufficient condition,
which guarantees ( )p p,e e

1 2 be an interior Nash equilibrium, is stated
in Theorem 4.2 as follows.

Theorem 4.2. If ( )p p,e e
1 2 satisfies:

ρ( ( ( − ) − ) ) > > > ( )d p p pmin 1/ 1 1 , 0, 24max
e e2
1 2

then ( )p p,e e
1 2 is an interior Nash equilibrium.

Proof. Since >p 0e
1 and >p 0e

2 , we have
− = + − >p p d p d d 0e e e

1 2
2

1 , which implies >p pe e
1 2 . Thus, the

condition in (20) is satisfied. To guarantee the condition in (21), we
require the inequality ρ( ( − ) − ) >d p1/ 1 1 e2

1 , which is obtained by
substituting ( )p p,e e

1 2 in (19) into (21). We prove that ( )p p,e e
1 2 sa-

tisfies the condition of the Nash equilibrium (22) and (23) as
follows.

Since we have > >d p 0e
2 , by using Lemma 4.1, ( )U p p, e

1 1 2 is a

strictly concave function in ( )p p,e
max2 w.r.t. p1. We can solve pro-

blem (14) by finding the root of =∂
∂ 0U
p

1

1
. Since p1

e is the root of

=∂
∂ 0U
p

1

1
, p1e maximizes ( )U p p, e

1 1 2 in ( )p p,e
max2 w.r.t. p1. Then, con-

dition (22) is verified.
From Lemma 4.1, because ( )U p p,e

2 1 2 is a strictly concave func-

tion in ( )p0, e
1 w.r.t. p2 and the root of =∂

∂ 0U
p

2

2
is p2

e, then p2
e

maximizes ( )U p p,e
2 1 2 in ( )p0, e

1 w.r.t. p2. Therefore, condition (23) is
verified.

Then, ( )p p,e e
1 2 satisfies all condition in Theorem 4.1. The proof is

completed. □

We will investigate the uniqueness of the Nash equilibrium
together with the convergence of an iterative algorithm (Algo-
rithm 1) based on the best response dynamics, which is commonly
used to study Nash equilibrium stability. With starting prices
( )p p,1

0
2
0 , the algorithm iterates until the convergence condition (ϑ<

a predefined threshold th) is satisfied.

Algorithm 1. Iterative algorithm.
1. I

2:
3:
4:
5:
nitialize parameters: a value of ( ( ) ( ))p p0 , 01 2 , t ¼ 1;

while ϑ ≥ th:
( ) = ( ( − ))p t BR p t 12 2 1 ,
( ) = ( ( − ))p t BR p t 11 1 2 ,

ϑ = | ( ) − ( − )| + | ( ) − ( − )|p t p t p t p t1 12 2 1 1 ,
= +t t 1,
end while
7:

By imposing a condition on pmax, we can guarantee both the un-
iqueness of the Nash equilibrium and convergence of Algorithm 1
to this equilibrium by using contraction mapping theorem (Bert-
sekas and Tsitsiklis, 1989; Lee et al., 2007). Contraction mapping
theorem in Bertsekas and Tsitsiklis (1989) is as follows.

Theorem 4.3. Let Φ be a complete metric Euclidean space and
Φ Φ→f : be a mapping. Suppose there is a constant κ ∈ [ )0, 1 such

that κ Φ∥ ( ) − ( )∥ ≤ ∥ ( ) − ( )∥ ∀ ∈f x f y f x f y x y, , , where ∥·∥ is some
norm. Such an f is called a contraction. Then f has a unique fixed point

Φ∈⁎p . Furthermore, the sequence ( ) = ( ( − ))p t f p t 1 converges to a
unique fixed point.

Then, the convergence of Algorithm 1 and uniqueness of the
Nash equilibrium are characterized in Theorem 4.4 as follows.

Theorem 4.4. Let ( )p p,e e
1 2 be the Nash equilibrium. Then, Algorithm 1

converges to the Nash equilibrium price ( )p p,e e
1 2 , which is unique if

< < −p p d a/16e
max1 .

Proof. If < < −p p d a/16e
max1 , both ( )U p1 1 and ( )U p2 2 are strictly

concave in the feasible region. Based on Algorithm 1, we have
iterations to update ( ( ) ( ))p t p t,1 2 by using the first order conditions

=∂ 0U
p
2

2
and =∂ 0U

p
1

1
as follows:

( ) = ( ( − )) = ( − ) − + ( − ( − )) ( )p t BR p t p t d d p t a1 1 1 , 251 1 2 2 2

( ) = ( ( − )) = ( − ) + − + ( − ) ( )p t BR p t p t d d p t d1 1 1 . 262 2 1 1
2

1

We show that the updating rule from ( ( − ) ( − ))p t p t1 , 11 2 to
( ( ) ( ))p t p t,1 2 is a contraction mapping, which proves that the
iterations of Algorithm 1 converge to a unique fixed point (i.e., the
Nash equilibrium price ( ))p p,e e

1 2 .
The update iterations in Algorithm 1 can be written as

( ) = ( ( − )) = … ( )p t F p t t1 , 1, 2, 27

where R( ) ∈ +p t 2 is the price vector ( ( ) ( ))p t p t,1 2 and R R→+ +F: 2 2 is
a mapping from R+

2 into itself. Based on the property of matrix
norm, we have

∥ ( ) − ( )∥ ≤ ∂
∂

·∥ − ∥
( )

F x F y
F
p

x y .
28

To prove that the mapping (27) is a contraction, we show that
there exists a constant κ ∈ [ )0, 1 such that the Jacobian κ∥ ∥ ≤∂

∂
F
p

for

a certain norm. The Jacobian ∂
∂
F
p
is defined as follows:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

−
( − )

−
+ ( )

a

a d p

d

d dp

J

0 1
2

1
2

0
29

2

2
1

Using ∥·∥∞, we have

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∥ ∥ = −

( − )
−

+
∞

a

a d p

d

d dp
J max 1

2
, 1

2
.

2
2

1

We can see that − <
+

1 1d

d dp2 2
1

, ∀ >p 01 . To guarantee

− < ∀ ∈ ( )
( − )

p p1 1, 0,a

a d p max2 2
2

, we have to require

< −p d a/16max . Therefore, if < < −p p d a/16e
max1 , we have
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Fig. 4. Illustration of convergence speed of Algorithm 1 with parameters: μ = 30, λ = 10, α = 0.5, = −p 15. 10max

3. These parameters imply the Nash equilibrium point
( )p p,e e

1 2 ¼ ( )− −4, 6. 10 , 2, 4. 103 3 .

C.T. Do et al. / Journal of Network and Computer Applications 69 (2016) 152–165158
∥ ∥ <∞J 1. Then, there exists a positive constant κ ∈ [ )0, 1 such that
κ∥ ∥ ≤∂

∂ ∞
F
p

. Thus, we have shown that

κ∥ ( ) − ( )∥ ≤ ∥ − ∥ ( )∞ ∞F x F y x y , 30

which proves that F is a contraction. Using Theorem 4.3, Algorithm
1 converges to the unique fixed point, which is the Nash equili-
brium price ( )p p,e e

1 2 . □

Numerical example: We use an example to illustrate how prices
converge iteratively. Fig. 4(a) shows an example of the best re-
sponse function ( )BR p2 1 and ( )BR p1 2 when two reaction curves have
one intersection point that is the unique Nash equilibrium point
( )p p,ns ns

1 2 . Fig. 4(a) also illustrates the iterative algorithm. At first,
given a starting price ( )p 02 , the CB reacts by setting the best re-
sponse price ( )p 11 according to (11). In the next period, given the
price ( )p 11 , the PP reacts by setting the best response price ( )p 22
according to (12). This process continues until the convergence
condition is satisfied. Fig. 4(b) shows that the iterative algorithm
can reach the convergent point quickly and smoothly.
5. Service selection game of cloud users

In this section, we introduce the evolutionary game in order to
study the dynamic behaviors of cloud users who decide which
service (from the PP or CB) to use based on the observed attributes
of the system (i.e., delay and prices). First, we provide some pre-
liminaries of the evolutionary game. Then, we formulate the ser-
vice selection of the cloud user as an evolutionary game, in which
we apply replicator dynamics to study the dynamic behaviors of
cloud users. We provide convergence analysis of replicator dy-
namics in the deterministic model and the stationary distribution
vector in the stochastic model. We also implement the service
selection algorithms through two approaches.

5.1. Preliminaries of evolutionary game

In this subsection, we briefly introduce theoretic concepts of
evolutionary games and replicator dynamics (Sandholm, 2010)
which were recently used in a network selection game (Niyato and
Hossain, 2009; Niyato et al., 2009; Elias et al., 2013; Chen and
Huang, 2013).

An evolutionary game is an extension of the formulation of a
noncooperative game by introducing the concept of population.
This population is a group of individuals (i.e., players) who are
evolutionarily identical in that they have the same strategy set and
experience the same expected payoffs from using the same stra-
tegies. Like noncooperative games, the individuals from one po-
pulation may choose strategies against individuals in another po-
pulation. When the game is repeated, the population of players
evolves over time since the population is able to reproduce (i.e.,
replicate) itself through the process of mutation and selection. The
goal of an evolutionary game is to determine the equilibrium point
for the game of the population. At this evolutionary equilibrium,
none of the individuals wants to change its strategy since its payoff
(or cost) is equal to the average payoff of the population.

An evolutionary game is defined by players, population, stra-
tegies and payoff. Consider an evolutionary game where each
player follows one of pure strategy si from a finite set of strategies,

= …i I1, , . Let ni denote the number of individuals choosing
strategy si, and = ∑ =N ni

I
i1 denote the total population size. The

proportion of individuals choosing strategy si is =xi
n
N

i , and this
value is referred to as the population share. The population state
can be denoted by the vector = [ … … ]x x x x, , , ,i I1 . The payoff of
players in the same population who play strategy si is denoted by
π π= ( )xi i . The game is repeated in periods = …t 1, 2, .

The replicator dynamics can be defined as follows:

σ π π̇ ( ) = ( ) [ ( ) − ¯ ( )] = … ( )x t x t t t i I, 1, , , 31i i i

where π ( )ti is the payoff (or cost) of the individuals choosing
strategy si at time t, π̄ ( )t is the average payoff of the entire po-
pulation, and s is the rate of strategy adaptation. ̇ ( )x ti describes
the derivative of the population state xi(t) with respect to time.
The replicator dynamics can measure the essence of selection (e.g.,
proportion of individuals who choose different strategies), given a
particular point in time. Based on the replicator dynamics, the
evolutionary equilibrium is defined as the set of fixed points at
which the replicator dynamics are stable.

5.2. Formulation of evolutionary game

We consider an evolutionary game in which the players (i.e.,
cloud users) choose by a strategy set denoted by = { }S s s,1 2 : s1
means that the player chooses the service from the CB, and s2
means that the player chooses the service from the PP. N denotes
the total number of cloud users that join the market, and ni de-
notes the number of individuals choosing strategy si. The corre-
sponding arrival rate of users joining the CSP is λ λ= =i, 1, 2i

n
N

i .
The proportion of individuals choosing the CB service x1 is equal to

= λ
λ

x1
1, and the proportion of individuals choosing the PP service is
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= =λ
λ

λ λ
λ
−x2

2 1.
The cost of the individuals choosing the CB service is

= [ + ]α
μ

C p1 1 , and the cost of the individuals choosing the PP ser-

vice is = [ + ]α
μ λ−C p2 22

. Thus, the average cost of the entire popu-

lation C̄ is equal to

λ
λ

λ
λ

¯ = + ( )C C C . 32
1

1
2

2

5.3. Replicator dynamics of the service selection game

The service selection game is repeated, and in each period, the
user observes the cost of other users in the same area. Then, in the
next period, the user adopts a strategy that gives a lower cost than
other strategies. For the infinite populations assumption, re-
plicator dynamics is useful to analyze how players can “learn”
about their environment and investigate the convergence speed of
strategy adaptation to reach a stable solution in the game (Sand-
holm, 2010; Elias et al., 2013; Niyato and Hossain, 2009).

Here, the aim of each cloud user is to minimize his cost. Hence,
we can formalize the service selection game as follows:

σ̇ ( ) = ( ) [ ¯ ( ) − ( )] ( )x t x t C t C t , 331 1 1

where ̇ ( )x t1 represents the derivative of x1 with respect to time. A
similar equation can be written for a cloud user choosing the PP.
Thus we can express the replicator dynamics for such cloud users
as follows:

σ̇ ( ) = ( ) [ ¯ ( ) − ( )] ( )x t x t C t C t . 342 2 2

Based on the replicator dynamics of the users, the number of users
choosing service from either the PP or CB increases if their cost is
below the average cost. We can observe that, if we have

̇ ( ) + ̇ ( ) =x x0 0 01 2 at the starting time, then at every time t, we ob-
tain ̇ ( ) + ̇ ( ) =x t x t 01 2 .

5.4. Convergence analysis of replicator dynamics

In Sandholm (2010), the author shows that Wardrop equilibria
are the stationary points of (33) and (34). In this subsection, we
prove that the unique non-trivial fixed point of such dynamics
coincides with the Wardrop equilibrium point of the cloud user
service selection game already determined in Section 4.1.

5.4.1. Evolutionary equilibrium
We consider the evolutionary equilibrium as the solution to

this service selection game. An evolutionary equilibrium is a fixed
point of the replicator dynamics. At this fixed point, which can be
obtained numerically, costs of all users in the population are
identical. In other words, since the rate of strategy adaptation is
zero (i.e., ̇ =x 0i ), there is no user who deviates to gain a lower cost.
To find the fixed point =⁎x i, 1, 2i of the replicator dynamics, we
solve ̇ = ̇ =x x 01 2 . The solution of ̇ = ̇ =x x 01 2 coincides with one of

− =C C 01 2 , which is the Wardrop equilibrium, as presented in (8)
in Section 4.1.

5.4.2. Stability analysis
We analyze the stability of the replicator dynamics given by

(33) and (34). However, we present the analysis for (34), and the
same analysis can be conducted for (33). From (34), we can re-
present the dynamics of value x2 as follows:

⎛
⎝⎜

⎞
⎠⎟

σ( + ) = ( ) + ( ) [ ¯ ( ) − ( )]

= ( ) + ( )[ − ( )] −
− ( )

= ( ( ))
( )

x t x t x t C t C t

x t x t x t q r
s x t

G x t

1

1
1

,
35

2 2 2 2

2 2 2
2

2

where

ασ
λ

λ
α

μ
α

≜ ≜
( + − )

≜ ( )q r
d p p

s, , and , 36
1 2

and ( ) = + [ − ] ( − )−G x x x x q r1
s x

1 , [ ] → [ ]G: 0, 1 0, 1 is a mapping
from [ ]0, 1 onto itself. The above dynamics has the fixed point

=
λ

λ
⁎x2

e
2 , in which λ2e is the Wardrop equilibrium already derived by

(9) in Section 4.1. Define

⎛
⎝⎜

⎞
⎠⎟≜ − ( − )

( )
x r

s s
r

1
,

37
g
2

1/3

⎛
⎝⎜

⎞
⎠⎟ϝ ≜ ′( ) = + ( − ) +

−
+

( − )
( − ) ( )

G x q x r
x s

q x x
s x

1 1 2
1 1

,
38

g g
g

g g

g2 2
2

2 2

2
2

ζ ≜ | ′( )|
( )∈[ ]

G xmax .
39x 0,1

To investigate the convergence of the replicator dynamics in (35)
to the fixed point ⁎x2, we start by establishing the following aux-
iliary lemma.

Lemma 5.1.

⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

ζ =
[|ϝ| | ′( )|] ∈ ( )

| ′( )| = − −
− ( )

G x

G q r
s

max , 1 , if 0, 1

1 1
1

1
, otherwise

40

g
2

Proof. The proof of the first part is straightforward by verifying the
second-order condition ″( )G x . x2g is a unique root of ″( ) =G x 0. □

Using the result from Lemma 5.1, we characterize the convergence
of the replicator dynamics in (35) using the following theorem.

Theorem 5.1. If ζ < 1, then the replicator dynamics depicted in (34)
converges to the nontrivial fixed point ⁎x2 for any initial state

< ( ) <x0 0 12 .

Proof. If ζ < 1, then there exists a positive constant ξ ∈ [ )0, 1 such
that ξ∥ ′( )∥ ≤∞G x . Therefore, we have

ξ∥ ( ) − ( )∥ ≤ ∥ ′( )∥ ·∥ − ∥ ≤ ∥ − ∥ ( )∞ ∞ ∞ ∞G u G v G x u v u v . 41

Thus, we have shown that the replicator dynamics
( ) → ( + )x t x t 12 2 in (35) is a contraction. Using Theorem 4.3, the

replicator dynamics converges to the unique fixed point, which is
the Wardrop equilibrium ⁎x2. □

5.5. Stochastic evolutionary game

The replicator dynamics in (32) are deterministic and do not
include the noise. The noise is generated from a small proportion
of irrational users who may choose to use service with a lower
performance and higher price because of incorrect cost informa-
tion. In this scenario, we use a Markov chain to analyze the long
term behavior in the cloud user society of the stochastic evolu-
tionary game (Sandholm, 2010; Niyato and Hossain, 2009).

We assume that there is a finite population of N cloud users, n2
is the proportion of users choosing the PP and = −n N n1 2 is the
proportion of users choosing the CB. Then, the finite state space S
of the Markov chain is χ χ{ ∣ ≤ ≤ }N02 2 , where χ2 is a random
variable denoting the number of cloud users choosing the PP. The
number of cloud users choosing the CB χ χ= −N1 2.

Let us revise the replicator dynamics in (34) for users choosing
the PP as σ̇ ( ) = ( ) [ ¯ ( ) − ( )]x t x t C t C t2 2 2 . In the replicator dynamics,
the costs ( )C t2 and ¯ ( )C t of a user are varied by the proportion of
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users ̇ ( )x t2 that is equivalent to the number of user n2 at time t.
Thus, we can present the cost of users as a function of the number
of cloud users, i.e., ( )C n2 2 and ¯ ( )C n2 .

The deterministic replicator dynamics in (32) are based on the
assumption: all users are rational users. If the cost offered by the
PP is less the average cost (i.e., ¯ ( ) ≥ ( )C n C n2 2 2 ), rational users will
choose the PP. Different from deterministic replicator dynamics, in
the stochastic evolutionary game, there is a small number of ir-
rational users. This means that, if the cost offered by the PP is
greater than the average cost (i.e., ¯ ( ) < ( )C n C n2 2 2 ), then irrational
users choosing the PP keep selecting the PP with probability ε,
which is noise. The elements of the state transition matrix Q can
be calculated directly as follows:

⎪

⎧⎨
⎩ ε

= ( ¯ ( ) − ( ́ )) ¯ ( ́ ) ≥ ( ́ )

( )
́q

n C n C n C n C n

n

, if ,
, otherwise, 42

n n,
2 2 2 2 2 2 2

2
2 2

with ≠ ́n n2 2 , and the element ́qn n,2 2
indicates the rate of state

transition when the number of users choosing the PP changes
from n2 to ́n2 . Then we have

∑= −
( )≠ ́

́q q .
43

n n
n n

n n, ,2 2
2 2

2 2

In the stochastic evolutionary game, the objective is to identify
the stochastically stable states when the noise is relatively small
(e.g., ε = −10 4). Thus, the state transition matrix Q of the Markov
chain can be defined as follows:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

( )
− − − − −

−

q q
q q q

q q q
q q

Q . . .
. . . .

44

N N N N N N

N N N N

0,0 0,1

1,0 1,1 1,2

1, 2 1, 1 1,

, 1 ,

The stationary distribution of this chain can be found by solving
Π =Q 0 subject to the constraint that elements of vector Π must
sum to 1. Vector Π is the steady-state probability of the Markov
chain and is defined as

Π Π Π Π Π= [ … … ] ( ), , , , , , 45n N0 1 2

where Πn2 indicates the probability of n2 number of users choosing
the PP in a long time span. We will observe the stationary dis-
tribution vector Π in the numerical results later in this paper.

5.6. Implementations of the service selection algorithm

We present two approaches for dynamic evolutionary game-
based service selection by each individual user in the hetero-
geneous market in cloud computing. The first approach is based on
population evolution, in which cost information of cloud users
using different CSPs is exchanged between groups of cloud users.
The second approach is based on reinforcement learning and more
specifically the application of Q-learning, in which each user ob-
serves the average delay and prices from the chosen service, ex-
plores different services and selects which services are good based
on past observation. Both approaches attract cloud users to the
equilibrium of service selection game. However, the service se-
lection algorithm based on population evolution utilizes in-
formation from all users to achieve fast convergence using an in-
formation exchanged mechanism. On the other hand, in the re-
inforcement learning-based approach, the cloud users learn the
performances and prices of different cloud providers through in-
teraction so as to make the optimal decision for service selection.

5.6.1. Population evolution approach
This approach is based on population evolution in which cost
information of cloud users using different providers is exchanged
between two groups of cloud users (e.g., by a third party who
collect cost information of all cloud users or through an informa-
tion exchanging mechanism). The service-selection decision of
each user is based on its current cost and the average cost of all
users. This service-selection algorithm based on the population
evolution approach can be described in Population Evolution Al-
gorithms (Algorithm 2).

Algorithm 2. Population Evolution Algorithm.
Initializing: all cloud users choose randomly the service from
the CB or PP, t¼1.
repeat for all cloud users:
A user computes cost Ci(t) (i¼1,2) from the average delay
and price. This cost information is informed to the other
user group.
Based on the exchanged cost information, the average cost
¯ ( ) = λ λ

λ
( ) ( ) + ( ) ( )C t t C t t C t1 1 2 2 is calculated and informed to all user

groups.
if ( ) < ¯ ( )C t C ti then
if σ(·) < ( ¯ ( ) − ( )) ¯ ( )rand C t C t C t/i then

Choose service j, where ≠j i.
else
Keep service i.

= +t t 1, go back to step 2.
10:

5.6.2. Reinforcement learning approach
The cost information exchange requires overhead and may

provide out-of-date information due to delay in exchanging in-
formation. In the reinforcement learning approach, each user has
to learn and adapt its service-selection decision independently.
The Q-learning is applied in evolutionary game in Niyato and
Hossain (2009), Tuyls and Nowé (2005), and Panait et al. (2008),
which presented the relation between Q-learning and the re-
plicator dynamics. Thus, we use the Q-learning algorithm (Sutton
and Barto, 1998) to implement the service-selection algorithm. In
this Q-learning game formulation, the agent (i.e., the cloud user)
has a set of actions denoted by = { }A a a,1 2 : a1 means that the
agent chooses the service from the CB, and a2 means that the
agent chooses the service from the PP. The reward of the agent
that chooses the service of CSP i is − ( )C ti at time t. To select the
best service, the Q-learning algorithm uses the Q-value (i.e., Qi(t))
to compare the expected cost of the available service selections
without requiring complete cost information exchange. The ser-
vice-selection algorithm is described in Algorithm 3.

Algorithm 3. Q-Learning algorithm.
Initializing: Q-value ( ) =Q 1 0i associated with service =i 1, 2
(value 1 denotes the service from the CB, and value 2 de-
notes the service from the PP) for all cloud users in all
groups (CB users and PP users).
repeat for all cloud users:
if γ(·) <rand then
Choose the service i randomly [exploration step].

else
Choose the service = ( )⁎i Q targ maxi i [exploitation step].

Cloud user computes cost Ci(t).
Cloud user updates

ξ ξ β( + ) = ( − ) ( ) + ( − ( ) + ( ))Q t Q t C t Q t1 1 maxi i i i i .
= +t t 1, go back to step 2.
9:

In the Q-Learning algorithms, ξ denotes the learning rate and β is a
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discount factor, which controls the speed of adjustment of the
Q-value. In the Q-learning, there are two phases: exploration and
exploitation. At step 4, the Q-learning algorithm performs the
exploration phase with γ-greedy selection, which controls the
randomness of exploration. This means that there is a small
probability γ of users that, rather than take the best action, will
uniformly select an action from the set of actions. This exploration
phase guarantees that good CSP will not be missed during the
learning procedure. The exploitation is represented in step 6, in
which the cloud users learn to take the optimal actions by com-
paring the Q-value of CSPs. The trade-off between exploration and
exploitation is one of the great challenges of Q-learning. The in-
terpretation of exploitation–exploration is the selection–mutation
concept in the evolutionary game approach.
Table 1
Comparison of the utilities, equilibrium prices and user arrival rates of CSPs vs.
service rate μwith the parameters as follows: α = 0.5, =p 0.015max , total cloud user
arrival rate λ = 10.

μ U1 U2 λ1 λ2 p1 p2 Cost C

30 0.0303 0.0085 6.53 3.46 0.00463 0.00360 0.0213
35 0.0215 0.0059 6.55 3.44 0.00329 0.00173 0.0175
40 0.0161 0.0044 6.56 3.43 0.00245 0.00128 0.0149
45 0.0125 0.0033 6.58 3.41 0.00190 0.00098 0.0012
50 0.0100 0.0026 6.58 3.41 0.00151 0.00078 0.0115
6. Extension: multiple public providers and cloud brokers
scenario

The study of the duopoly scenario can be extended to a general
scenario with multiple N CBs and M PPs, where each CSP (both CB
and PPs are known as CSPs) competes with the others.

The noncooperative static game between N CBs and M PPs can
be considered similar to that in Section 4.2. Each CSP i
( = … +i N M1, , ) in a total of +N M CSPs has the utility function
defined as λ( ) =U P pi i i, where pi and λi are a service price and user
arrival rate at the CSP i, respectively. = [ … ]+p pP , , N M1 and
Λ λ λ= [ … ]+, , N M1 are the price vector and arrival rate vector of
CSPs, respectively. The vector Λe is a Wardrop equilibrium, if and
only if there exist >C 0 such that:

λ λ( ) = > ∀ ( )C C i, if 0, , 46i i
e

i
e

λ λ( ) > = ∀ ( )C C i, if 0, , 47i i
e

i
e

∑ λ λ=
( )=

+

.
48i

N M

i
1

Anselmi et al. (2011) and Roughgarden and Tardos (2002) have
shown that finding a Λe is equivalent to finding a solution of fol-
lowing convex optimization problem:

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥∫∑ ( )

( )λ

λ

≥ =

+

C x dxarg min ,
49i

N M

i
0

1 0i

i

∑ λ λ=
( )=

+

s t. . .
50i

N M

i
1

Thus, we can find the vector Λe is a Wardrop equilibrium using a
certain standard convex tool in Boyd and Vandenberghe (2004).

We consider the Nash equilibrium prices as a solution of the
noncooperative static game among CSPs. Then, the Nash equili-
brium prices are obtained using the best response function of each
of CSP. The best response function can be defined by extending
that in Section 4.2 as follows:

( ) = ( )
( )−

≥
−BR P U p Parg max , ,

51i i
p

i i i
0i

where −P i denotes the vectors of service price of all CSPs except
CSP i (i.e., = [… …]− pP , ,i j for ≠j i). The Nash equilibrium price
vector = [… …]pP , ,ns

i
ns of the price competition between CSPs can

be obtained from the condition
= ( ) ∀ ( )−p BR P i, . 52i
ns

i i

The service selection game is similar to that in Section 5. We
denote the population state by the vector = [ … ]+x xX , , N M1 . Then,
the replicator dynamics is defined as follows:

σ̇ ( ) = ( ) [ ¯ ( ) − ( )] ∀ ( )x t x t C t C t i, , 53i i i

where Ci(t) and ¯ ( )C t are the cost of the individuals choosing CSP i
service and the average cost of the entire population at time t,
respectively. Then, the population equilibrium is defined as the
stable fixed point of the replicator dynamics (Sandholm, 2010).
When a population of users evolves over time, it will converge to
the population equilibrium, which can be obtained by solving

̇ = ∀ ( )x i0, . 54i

However, studying the multiple N CBs and M PPs scenario is dif-
ficult, even to find the solution numerically. The difficulty is on
how to define the equilibrium arrival rate at Eq. (46). We need to
define the arrival vector Λe which contains the cloud user rates at
N CBs and M PPs. However, there will exist +N M variables.
Therefore finding the Nash equilibrium solution in such a case is
not trivial as solving Duopoly scenario with one variable. However,
once additional assumptions are made, it may be possible to solve
for the equilibrium point. We suppose that N CBs belong to a
Primary CB (PCB) (e.g., Google Cloud) and the PCB sets the same
admission price p for all N CBs to reduce the number of variables.
Thus, the analysis presented in Sections 4 and 5 can be similarly
extended to the multiple PPs and CBs scenarios at the expense of
the increased complexity.
7. Performance evaluation

In this section, we analyze and discuss the numerical results
obtained from solving pricing and service selection games in dif-
ferent scenarios. At first, we measure the sensitivity of CSP utilities
and prices, as well as cloud user equilibrium arrival rate and costs.
Then, we evaluate the convergence to the evolutionary equili-
brium of the service selection game with the population algorithm
and reinforcement learning algorithm. We also study the impact of
delay in the Population Evolution Algorithms and noise in the
stochastic evolutionary game. The design of our simulator is based
on a time-slotted synchronous model with all events generated
and processed in their respective time slots. Our simulator is de-
veloped using MATLAB.

7.1. Pricing competition numerical results

7.1.1. Pricing competition in a duopoly market
We first consider the impact of service rate μ in a duopoly

heterogeneous CSP market. Since the proposed game model is
used to achieve the Nash equilibrium prices, we will investigate
the effects of resource capacities (i.e., μ) on equilibrium prices.
Table 1 shows the comparison of the utilities, equilibrium prices



Table 2
Comparison of the utilities, equilibrium prices and user arrival rates of CSPs vs.
arrival rate λ with the parameters as follows: α = 0.5, =p 0.015max , service rate

μ = 50.

λ U1 U2 λ1 λ2 p1 p2 Cost C

05 0.0023 0.0006 3.13 1.68 0.00070 0.00036 0.0107
10 0.0100 0.0026 6.58 3.41 0.00151 0.00078 0.0115
15 0.0240 0.0066 9.82 5.17 0.00244 0.00128 0.0124
20 0.0457 0.0132 13.00 7.00 0.00351 0.00189 0.0135

Fig. 6. The equilibrium prices over 60 days.
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and user arrival rates of CSPs when the service rate μ varies. We
observe that the equilibrium utilities of the CB (U1) are always
higher than these of the PP (U2) in this scenario. As we can see, the
equilibrium prices of both CB and PP decrease when the service
rate increases. Our results in Table 1 show that, when service rate
changes, the user arrival rates of CSPs remain nearly constant. Both
the equilibrium arrival rate and the equilibrium price of the CB are
higher than those of the PP, demonstrating that utilities of the CB
(U1) are always higher than those of the PP (U2). The cost C of
cloud users decreases when the service rate increases; however,
the service rate μ has a greater affect on the equilibrium prices and
CSP utilities than the user cost and arrival rates.

We then study how the total arrival rate, λ, affects the Nash
equilibrium prices. Table 2 shows how the utilities, equilibrium
prices and user arrival rates of CSPs react when the total arrival
rate λ increases. The CSP utilities and equilibrium price of the CB
are always higher than those of the PP. The results from Table 2
show that, the arrival rate λ has a greater affect on the CSP equi-
librium prices and utilities than the user cost and arrival rates.

Because of the fluctuation of arrival rate λ at the cloud market,
we should update the pricing according to the total arrival rate λ.
We assume that the pricing can be updated effectively during one
day, which is the period in which CSPs and cloud users obtain the
expected delay and arrival rates. We use realistic traces for the
average incoming request rate λ per hour in one day. All of them
are scaled in a range of [ ]0, 20 , as shown in Fig. 5. The data is a one-
year trace from 2007 of Microsoft Research (MSR), and it is taken
from 6 RAID volumes at MSR Cambridge (Lin et al., 2013).
Figs. 5 and 6 show the equilibrium arrival rates and prices during
60 days. The fluctuation of equilibrium arrival rates and prices is
similar to that of the total arrival rate, which shows the im-
portance of the total arrival rate.

7.1.2. Pricing competition in a multiple CSP market
This subsection presents some interesting observations when

multiple CSPs are competing for the same poll of cloud users. We
conduct our evaluation in a scenario with one CB and two PPs,
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Fig. 5. The total arrival rate and equilibrium arrival rates over 60 days. Equilibrium
cost.
with resource capacities of μ = 301 , μ = 352 and μ = 403 , respec-
tively. Table 3 shows the comparison of the utilities, equilibrium
prices and user arrival rates of CSPs when the arrival rate λ varies.
It is interesting that the variety of the resource capacities has a
strong effect on the equilibrium prices as well as the other para-
meters of the market. We see that, when the resource capacity
μ = 352 is less than that of μ = 403 , the utilities, arrival rates and
equilibrium rates of the PP 2 are always lower than those of the PP
2. However, with respect to the CB, there is a different observation
between this scenario and the duopoly scenario; that is, the uti-
lities of the CB (U1) are not always the highest. When arrival rate λ
is set to 10, the utility U1 is the lowest among three CSPs. However,
when the arrival rate λ increases, the market share (i.e., the arrival
rate λ1) of the CB also increases. As a result, the utility U1 increases
with the arrival rate λ1 and the equilibrium price p1. As we can see,
a larger arrival rate leads to greater utility for all CSPs, which
further shows the importance of the arrival rate.

7.2. Evolutionary game numerical results

7.2.1. Convergence to the evolutionary equilibrium
We consider a heterogeneous market CSP cloud computing

with a random initial proportion of users choosing each CSP and
the parameters as follows: α = 0.5, total cloud user arrival rate
λ = 70 and service rates μ = 100, γ = 0.1, ξ = 0.1, and β = 0.2. Fig. 7
shows the convergence properties of the service-selection algo-
rithms based on the population evolution and the Q-learning ap-
proaches. The former algorithm converges to the equilibrium
within less than ten iterations (i.e., with a cloud user cost 0.009).
In contrast, the latter one requires a larger number of iterations to
reach the equilibrium. From the implementation viewpoint, the
Q-learning algorithm is more practical due to the fact that a pro-
cedure of gathering, processing, and exchanging cost information
of cloud users may not be available in practice. However, the Po-
pulation Evolution Algorithm utilizes the average cost information
and so uses less iterations to converge than the Q-learning algo-
rithm in which a user independently selects a service using only
its local cost information obtained through exploration.

7.2.2. Impact of delay in Population Evolution Algorithms
When a user makes the decision of service selection, current

information at a certain time t about the average cost (i.e., C̄ in
Algorithm 3) may not be available. Therefore, a user must rely on
historical information, which again, may be delayed for a certain
period. This delay can occur due to the information exchange la-
tency among users. Thus, we assume that a user makes a service
selection at time t based on the information from time t � τ (i.e., a
delay of τ units of time). In this case, the replicator dynamics can



Table 3
Comparison of the utilities, equilibrium prices and user arrival rates of CSPs vs. arrival rate λ with the parameters as follows: α = 0.5, =p 0.015max , service rate μ = 301 ,

μ = 352 and μ = 403 .

λ U1 U2 U3 λ1 λ2 λ3 p1 p2 p3 Cost C

10 0.0004 0.0040 0.0137 1.41 2.90 5.68 0.00031 0.00140 0.00241 0.0169
15 0.0055 0.0187 0.0068 4.84 3.66 6.49 0.00115 0.00186 0.00289 0.0178
20 0.0169 0.0105 0.0250 8.24 4.43 7.31 0.00205 0.00237 0.00342 0.0187
25 0.0355 0.0153 0.0328 11.62 5.21 8.15 0.00305 0.00293 0.00402 0.0197

0 10 20 30 40 50
8.9

9

9.1

9.2

9.3 x 10−3

Time

U
se

r A
ve

ra
ge

 C
os

t

Population evolution algorithm
Q−learning algorithm

Fig. 7. Convergence of the service-selection algorithms to the evolutionary equi-
librium cost.
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be modified as follows:

τ σ τ τ̇ ( ) = ( − ) [ ¯ ( − ) − ( − )] = ( )x t x t C t C t i, 1, 2. 55i i i

The convergence of the Population Evolution Algorithms with
different values of τ is shown in Fig. 8. We investigate the impact
of τ on the dynamics of strategy adaptation. When τ ≥ 1, we ob-
serve a fluctuating dynamics of strategy adaptation. For a small
value τ = 3, the difference between dynamics of strategy adapta-
tion without delay and that with delay is negligible as time in-
creases. The larger is the delay, the greater is the fluctuation. If
τ > 10, the dynamics of strategy adaptation of users never reaches
the evolutionary equilibrium, as presented in Fig. 8(b), because the
decisions of users tend to be inaccurate when information is out-
of-date.

7.2.3. Impact of noise in the stochastic evolutionary game
The stationary distribution vector Π of PP users obtained from

the stochastic model is shown in Fig. 9. The stationary distribution
depend largely on the population size N of the cloud users. In
Fig. 8. The convergence of Population Evolution Algorithms with different values of
particular, when the number of users N is small, it its more likely
that a user will select irrationally. Consequently, the stationary
distribution probabilities for the different states corresponding to
the evolutionary equilibria become more nonuniform as the bell-
shape probability mass function becomes larger, as shown in Fig. 9
(a). The top of the bell-shape in Fig. 9 is close to the number of PP
users (i.e., 350/1000 or 35/100 users) in the deterministic model
(i.e., replicator dynamics).
8. Conclusion

In this paper, we have studied the price competition in a het-
erogeneous CSPs market with two stages of competition. In pricing
competition between the CSP in stage I, we have derived the
equilibrium prices in the noncooperative static game. We provide
the sufficient conditions for the existence and uniqueness of the
Nash equilibrium and convergence of the iterative algorithm. At
the same time, we study the dynamic of cloud users in the service
selection game using the evolutionary game model in stage II. We
used the Wardrop equilibrium concept and replicator dynamics to
compute the equilibrium and characterized its convergence
properties in the service selection game. We also proposed two
approaches to implement the evolution of cloud users to attract
them to the equilibrium. Performance evaluation demonstrates
that our game model can represent the main characteristics of
pricing and service selection of the heterogeneous CSP market in
cloud computing. Numerical results show that, in a duopoly
market, the arrival rate or resource capacity has a stronger effect
on the CSP side (i.e., equilibrium prices and utilities) than cloud
user side (i.e., user cost and arrival rates). The CB always has higher
utility in the duopoly scenario; however, it may be not true in the
multiple CSPs scenario because the market share of the CB de-
pends on the total arrival rate. Our algorithms represent a first step
toward designing practical mechanisms to price resources in op-
erational IaaS cloud providers and cloud users, and are shown to
τ. The solid line is Population Evolution Algorithms without delay (i.e., τ = 0).



Fig. 9. Stationary distribution of PP users Π obtained from the stochastic model with noise level ε = −10 4 and different population size N.
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converge quickly.
In this paper, there are some limitations that are interesting to

consider in the future works. For example, we have considered one
service, but there are many cloud services in the practical cloud
market. The game between providers indeed can be extended as a
dynamic game and try to, e.g., show that dynamics converge to an
equilibrium. The multiple PPs and CBs scenarios are needed to
further investigate to reduce the complexity of the solution. Ad-
ditionally, we have not considered service-level agreement issues
that are also important for cloud users. To focus on the price
competition only, we ignore the operating costs (i.e., the costs to
maintain the resource capacity μ of the CSPs), which is a function
of service rate μ. Thus, the join provider pricing and resource ca-
pacity optimization are interesting objectives.
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