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Abstract: The concave utilities in the basic network utility maximisation (NUM) problem are only suitable for elastic flows. In
networks with both elastic and inelastic traffic, the utilities of inelastic traffic are usually modelled by the sigmoidal functions
which are non-concave functions. Hence, the basic NUM problem becomes a non-convex optimisation problem. To address
the non-convex NUM, the authors approximate the problem which is equivalent to the original one to a strictly convex
problem. The approximation problem is solved efficiently via its dual by the gradient algorithm. After a series of
approximations, the sequence of solutions to the approximation problems converges to a local optimal solution satisfying the
Karush-Kuhn-Tucker conditions of the original problem. The proposed algorithm converges with any value of link capacity.
The authors also extend their work to jointly allocate the rate and the power in a multihop wireless network with elastic and
inelastic traffic. Their framework can be used for any log-concave utilities.
1 Introduction

The inelastic traffic has grown tremendously beside the
traditional elastic traffic in the communication networks
nowadays. Traffic management in such heterogeneous
networks play a key role in guarantee the quality of service
of the inelastic traffic [1–11]. To allocate the resources to
multiclass traffic, many works in the literature assume the
constant bit rate (CBR), for example, [2, 5] or put
constraints on the delay for inelastic traffic, for example, [3,
4]. Most of these works base on the assumption that the
inelastic traffic is always admissible by the network,
otherwise, an admission control mechanism must be
proposed additionally [2–5]. One of the main research on
resource allocation for multiclass traffic is to extend the
well-known network utility maximisation (NUM) model for
elastic traffic, [12, 13], to support multiclass traffic. Since
the utilities associated with the elastic flows are modelled
by strictly concave functions, the traditional NUM model
with elastic traffic is a convex optimisation problem.
Therefore the dual-based algorithm which solves the NUM
via its dual converges to a global optimal solution [13].
However, the utility functions modelling the inelastic flows
are no longer concave. Sigmoidal functions are usually used
instead [1, 7–11]. As a result, the NUM becomes a
non-convex optimisation problem. Sigmoidal is a function
that is convex and has low value at the lower region. It is
concave and has high value at the higher region. (The step
function can be considered as a sigmoidal function with
infinity slope at the inflection point.) Hence, the admission
control scheme is naturally integrated if the non-convex
NUM problem is solved. However, it is difficult to solve
the non-convex NUM distributively. According to our
knowledge, there is no current work in the literature solving
the non-convex NUM distributively. The standard
dual-based algorithm applying to the non-convex NUM
does not converge anymore because of the non-zero duality
gap. The primal value generated by the dual algorithm can
be infeasible [7, 8].
There are several works addressing the non-convex NUM,

such as [7–10]. Works in [7, 8] utilise the standard
dual-based algorithm. The algorithm therein does not always
converge as mentioned above. Lee et al. [7] propose a
heuristic mechanism, called ‘self-regulating’. It is actually
an admission control scheme to avoid link congestion
caused by the non-concave utilities. Hande et al. [8] find the
conditions of link capacity for which the standard
dual-based algorithm converges to a global optimum. It
turns out that the link capacity must be greater than a certain
value in order to achieve the globally optimal convergence.
In case of scarce resources, a ‘capacity provisioning’ is
needed to guarantee the convergence of the standard
algorithm. The work in [9] applies the technique in [8] to
address the non-convex NUM framework of a random
access wireless LAN with elastic and inelastic traffic.
With a different approach, Fazel and Chiang [10] apply the

sum-of-squares relaxation to the non-convex NUM problem
and use the semidefinite programming to solve it. The result
approaches the global optimal solution when the order of
polynomials in the relaxation is increased. However, the
order of the relaxation is very high when the sigmoidal
function is steeper at the inflection point.
On the other hand, Wang et al. [14] indirectly deal with the

non-convex NUM by replacing the utility U(x) with the
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function

�(1/U (x))dx. This new function is always strictly
concave as U(x) is monotonically increasing. Then they
derive an utility-proportional fair algorithm. The solution is
always a lower bound of the globally optimal solution.
More recently, based on dual-based decomposition
technique, Abbas et al. [11] has proposed an algorithm
converging to a suboptimal solution of the non-convex
NUM. The dual problem is solved approximately by
stochastic surrogate optimisation to ensure the zero duality
gap.
We apply the successive convex approximation method to

address the non-convex NUM in this paper. The proposed
algorithm converges to a local optimal solution satisfying
the Karush–Kuhn–Tucker (KKT) conditions of the problem
for any value of the link capacity. An equivalent problem
of the original one is successively approximated to a
convex problem which is efficiently solved by the standard
dual-based decomposition approach. After solving a series
of approximation problems, the algorithm converges to a
KKT solution. At the stationary point, the approximation
becomes exact. The successive convex approximation
method is first introduced in [15]. It is usually used with
geometric programming in power control problems to
approximate the capacity constraints to a convex form (see
[16–19]). Chiang et al. [16] has a concise overview about
this method. On the other hand, the dual-based
decomposition approach has shown its efficiency in
building a distributed algorithm. The optimisation problem
is usually decomposed into several subproblems which can
be solved distributively [13, 16, 20–22].
Different from the previous works which allocate the

resources for multiclass traffic based on NUM model, this
paper proposes a unified framework which can be applied
to many cross-layer NUM models to support multiclass
traffic. (See [21, Section 3] and the references therein for
some typical cross-layer optimisation models.) The
followings are some examples to which our framework can
be applied:

1. Joint rate and power control for the multiclass traffic in
multihop wireless networks. In the wireless environment,
the link capacity is not fixed. It is regulated by the
transmission power and the interference of other
transmitting sources. The joint NUM is a non-convex
optimisation problem even with the elastic flows because
of the non-convex form of the capacity constraints, [16–
18, 23]. With both elastic and inelastic traffic, the joint
NUM problem is non-convex in both the objective and
the constraints. The successive approximation technique is
used in this case to approximate both the objective and
the constraints. This extension will be presented in
Section 4.
2. Joint rate control, routing and scheduling using the node
centric formulation for the multiclass traffic. The
well-known node-centric formulation of a multihop wireless
network is mainly for elastic flows with concave utility. By
decomposing the convex optimisation problem, the
scheduling, routing and end-to-end flow rate control are
implemented [24–26]. We can directly extend this
node-centric model to support the multiclass traffic using
the proposed framework in this paper.
3. Joint allocation of flow rate and persistent probability of
the multiclass users in the random access networks. The
corresponding work for elastic traffic is introduced in [20].
However, to extend to multiclass traffic, we cannot directly
apply the proposed framework in this paper because of the
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
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logarithmic transformation of the variables to separate the
constraints. The general requirements for the utility
functions are also different. The interested readers can refer
to [27] for more details.

The remaining of the paper is organised as follows:
Section 2 describes the network model. Section 3 presents
the approximation problem and the successive
approximation algorithm. Section 4 extends the framework
to jointly rate and power control for the wireless networks
with both elastic and inelastic traffic. Finally, the numerical
results and conclusions are given in Section 5 and
Section 6, respectively.

2 Network model

We consider a network that includes a set of links L. The
network is shared by a set of sources N . We denote N
and L as the cardinalities of N and L, respectively. Let
xs be the rate of the flow from source s and
x W [x1, ..., xN ] be the rate vector of all sources. (We use
italic characters to denote variables and bold characters to
denote vectors in this paper.) Assume that each flow rate
xs is bounded by the constants xmin

s and xmax
s . Each source

s is associated with a monotonically increasing utility
function Us(xs). Let L(s) be the set of links which the
flow from source s uses. The value

∑
s:l[L(s) xs is the total

traffic of the flows in the network that use link l. This
amount cannot exceed the capacity of the link, cl. Our
goal is to find the rate allocation that maximises the
aggregate utility in the network. Then the basic NUM is
stated as follows [12, 13]:

P1:Max.
∑
s[N

Us(xs)

s.t.
∑

s:l[L(s)

xs ≤ cl, ∀l [ L,

xmin ≤ x ≤ xmax

where

xmin = xmin
1 , . . . , xmin

N

[ ]
and xmax = xmax

1 , . . . , xmax
N

[ ]
In the case in which Us is strictly concave for all s [ N ,
the problem P1 is the basic NUM model described in
[12, 13]. This paper deals with the multiclass traffic, so
the utilities are both concave and non-concave functions
(see Fig. 1). At first, we consider two groups of utilities:
the concave utilities for elastic flows

U (x) =
log(x+ 1), if a = 1,

(x+ 1)(1−a) − 1

1− a
, if a [ (0, 1)< (1, 1)

⎧⎨
⎩ (1)

and the sigmoidal utilities for inelastic flows

U (x) = c

1+ e−a(x−b)
, ∀a, b, c . 0 (2)

The sigmoidal function has the inflection point b. It is convex
if x < b and is concave if x > b. The slope at the inflection
point increases as a increases. In Fig. 1, the sigmoidal with
a = 3 is steeper at the inflection point than the curve with a
= 1. The steeper the slope, the more stringent the realtime
153
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Fig. 1 Utility functions: U1(x) = (1/(1 + e−(x− 5))), U2(x) = x/(x + 1)
(α= 2), U3(x) = log(x + 1)/log(11) (α= 1), and U4(x) = 1/(1 + e−3(x− 4))
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application’s demand. On the other hand, the utility function
of the elastic user in the network with multiclass traffic
usually has the form as (1) in the literature. It is the α-fair
utility but shifted by 1 on the x-axis. Otherwise, if we use
the canonical form of α-fair utility for the elastic traffic, its
utility is always negative as α > 1, then the inelastic user
always takes the advantage over the elastic user in the
network.
Problem P1 is a non-convex optimisation problem because

of the sigmoidal utilities. Therefore it cannot be solved by the
canonical method as in [12, 13]. In the following section, we
apply a novel approach to derive a KKT solution to P1.

3 Successive approximation method

3.1 Convex approximate problem

We replace P1 with the equivalent problem as follows

P2:Max. log
∑
s[N

Us xs
( )( )

s.t.
∑

s:l[L(s)

xs ≤ cl, ∀l [ L

xmin ≤ x ≤ xmax

Problem P2 is still a non-convex optimisation problem
because of the non-concave objective. For the use of the
successive approximations method which requires a convex
objective in a minimisation problem (or a concave objective
in the maximisation problem, equivalently) [15], we
transform P2 into an epigraph-form problem [28, p.4.2.4],

P3:Max.y

s.t. y ≤ log
∑
s[N

Us(xs)

( )
∑

s:l[L(s)

xs ≤ cl, ∀l [ L

xmin ≤ x ≤ xmax
154
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Lemma 1: Let μ be the Lagrange multiplier associated with
the first constraint of P2 and ν and m be the Lagrange
multipliers associated with the respective first and second
constraints of P3. Suppose that Us(xs) is increasing and
positive for all s [ N , we have the following results

1. If (x*, μ*) is a KKT point of P2, then
(x∗, (

∑
i[N Ui(x

∗
i ))m

∗) is also a KKT point of P1.
2. If (x*, y*, ν*, μ*) is a KKT point of P3, then (x*, μ*) is
also a KKT point of P2.

Proof: It is quite straightforward to verify (1) and (2) by
writing down the KKT conditions of P1, P2 and P3 and
comparing them pair-by-pair. □

Problem P3 is a non-convex optimisation problem because
of the non-convex constraint y ≤ log

∑
s[N Us xs

( )( )
. Next,

we derive an inequality to approximate the non-convex
constraint to a convex one.

Lemma 2: For any vector θ = [θ1, θ2,…, θN]
T > 0 and 1Tθ = 1,

log
∑
s[N

Us xs
( )( )

≥
∑
s[N

us log
Us xs

( )
us

( )
(3)

Proof: We have the arithmetic-geometric mean inequality:∑
s[N usus ≥

∏
s[N us

( )us for all u ≥ 0, θ = [θ1, θ2,…, θN]
T

> 0, and 1Tθ = 1. Replacing us with Us(xs)/θs yields

∑
s[N

Us xs
( ) ≥ ∏

s[N

Us xs
( )
us

( )us

Inequality (3) is obtained by taking the logarithm of both
sides of above inequality. The equality holds if and only if

us =
Us xs

( )
∑

k[N Uk xk
( ) , s = 1, .., N (4)

□

From Lemma 2, we consider the approximation problem

P4t: Max.y

s.t. y ≤
∑
s[N

us log
Us xs

( )
us

( )
∑

s:l[L(s)

xs ≤ cl, ∀l [ L

xmin ≤ x ≤ xmax

As we has mentioned earlier, the successive approximation
algorithm solves a series of approximation problems. Each
approximation problem is identified by a value θ. The
superscript t in P4t means the tth approximation problem.
The sequence of solutions to the approximation problems
converges. At the stationary point, the approximation
becomes exact, i.e., the equality (3) always holds. We
transform P4t back to the canonical form, the following
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
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Table 1 Rate update functions

U(x) x(t + 1) Notes

1/(1 + e− a(x − b)) b− (1/a)log(q/θa− q) sigmoidal
x θ/q linear
log(x + 1) (θ/q/W(θ/q)) − 1 logarithm (α = 1). W(.)

is the Lambert
W-function,

the inverse function of
f (W ) =WeW

x/x + 1
�������
1
4
+ u

q

√
− 1
2

concave (α = 2)
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problem is obtained

P5t: Max.
∑
s[N

Ũ s xs; us
( )

s.t.
∑

s:l[L(s)

xs ≤ cl, ∀l [ L

xmin ≤ x ≤ xmax

where

Ũ s xs; us
( )

Wus log
Us xs

( )
us

( )

Lemma 3: The functions Ũ s xs; us
( )

, ∀s [ N are strictly
concave with both elastic and inelastic utilities given by (1)
and (2), respectively.

Proof: We can easily verify this fact by checking whether
their second derivatives are negative. □

From Lemma 3, P5t becomes a basic NUM with a strictly
concave objective. Therefore it can be solved efficiently using
the dual decomposition approach.

3.2 Solution to the approximation problem

We solve for the solution to P5t via its dual. Since P5t is a
strictly convex problem, the strong duality holds and the
dual optimal solution also coordinates with the primal
solution. The dual function of P5t is given by

D1(l) = max
x

∑
s[N

Ũ s xs; us
( )−∑

l[L
ll

∑
s[N

xs − cl

( )( )

= max
x

∑
s[N

Ũ s xs; us
( )− ∑

l[L(s)

ll

( )
xs

( )
+

∑
l[L

llcl

= max
x

Lx(x, l)+
∑
l[L

llcl (5)

where Lx(x, l)W
∑

s[N Ũ s xs; us
( )− ∑

l[L(s) ll

( )
xs.

The dual problem is

min
l≥0

D1(l) (6)

We apply the gradient projection algorithm to solve the dual
problem (6).

∑
s:l[L(s) xs(t)− cl is a gradient of D1(λ). Hence,

the gradient update is given by

l(t)l (t + 1) = l(t)l (t)+ k
∑

s:l[L(s)

x(t)s (t)− cl

( )[ ]+
, ∀l [ L

(7)

where κ is a sufficiently small step-size for the convergence of
the algorithm and x (t)(t) is the solution to the subproblem
maxxLx(x, λ) given by (5) at time instant t. Lx(x, λ) is a
concave function in terms of x. Hence, the optimal point
also satisfies the KKT conditions of subproblem (5). Let
q(t)s (t) W

∑
l[L(s) l

(t)
l (t). Solving the first derivative condition
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
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∂Lx(x, λ)/∂xs = 0 yields

x(t)s (t) = Ũ
′−1
s q(t)s (t); u(t)s

( )[ ]xmax
s

xmin
s

, ∀s [ N (8)

where [a]bc = max(c, min(a, b)). Here, we use superscript (t)

in notations λ(t), x (t) to imply that they are the values in
solving tth approximation problem. Table 1 shows the rate
updates corresponding to some common utility functions.

3.3 Successive approximation algorithm for the
non-convex NUM

Based on above analysis, the successive approximation
algorithm to control the flow rate of multiclass traffic is as
shown in Algorithm 1 (see Fig. 2).

We have the following theorem.

Theorem 1: Algorithm 1 (see Fig. 2) converges to the
stationary point satisfying the KKT conditions of P1.

Proof: Let fu(x)W
y

log
∑

s[N Us(xs)
( ) and f̃ u(x)W

y∑
s[N Ũ s xs; u

(t)
s

( ) . According to [15, 16], we need to

prove the following three conditions for the convergence to

the KKT point of the algorithm:

1. fu(x) ≤ f̃ u(x),

2. fu x(t)∗
( ) = f̃ u x(t)∗

( )
and

3. ∇fu(x) x=x(t)∗ = ∇f̃ u(x)
∣∣ ∣∣

x=x(t)∗

where x(t)∗ is the optimal solution of the tth iteration.

Conditions (1) and (2) are clearly satisfied with Lemma 3.
Condition (3) is verified by taking the derivative and
applying (4). Therefore Algorithm 1 (see Fig. 2) converges
to a local optimal solution which satisfies the KKT
conditions of P3. Suppose x* is the stationary point of
Algorithm 1 (see Fig. 2). It is also a KKT solution of P2 as
well as of P1 according to Lemma 1. The theorem is
thereby proved. □

We have two notifications in practical implementation of
Algorithm 1 (see Fig. 2) as follows. First, as we have seen,
Algorithm 1 (see Fig. 2) has two levels of convergence: the
outer iterations update θ (step 5) and the inner iterations
update the source rates and link prices (step 6). The initial
value of a new outer iteration is the stationary value of the
previous iteration. To update θ in step 5, each user needs
the information of the total utility of all the users. Therefore
155
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Fig. 2 Successive approximation algorithm for the non-convex NUM

Fig. 3 Successive approximation algorithm for the joint NUM
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each user broadcasts its utility value after each outer iteration
to all the other users in the network. Second, the inner
iterations must converge before updating θ theoretically.
However, in a large network, it is difficult to know the
stationary of all the sources. In order for Algorithm 1 (see
Fig. 2) to be more practical, we fix the number of inner
iterations in each outer iteration to a value. This value is
large enough to solve for the solution of P5t. We cannot
guarantee the convergence of the heuristic algorithm
theoretically. Nevertheless, from many experiments, the
heuristic implementation also converges and leads to similar
results as Algorithm 1 (see Fig. 2) does.

3.4 Log-concave utilities

Finally, we find the conditions of the utility functions for
which the above analysis can still be applied. First of all, U
(xs) must be a positive, continuously differentiable, and
increasing function for all s [ N . The important condition
is that the function θ log(U(xs)/θ) must be concave. In the
other words, U(xs) is a log-concave function, or

UU ′′ ≤ U ′2 (9)

For example, the following utilities are log-concave:

† concave functions satisfying conditions (1) and (2);
† polynomials having all real roots and satisfying conditions
(1) and (2) such as the convex functions x, x2, x(x + 1), …;
† sigmoidal-like functions xa

( )
/ k + xa
( )

, ∀a . 1, k . 0.

4 Extension: jointly rate and power control in
multihop wireless networks

In this section, we apply the framework in Sections 2 and 3 to
jointly control the rate and power in a wireless multihop
network with multilass traffic. Let us consider a multihop
wireless network which includes a set of nodes forming a
logical topology. Some nodes are the sources of the flows,
and some nodes act as the ‘relay’ nodes. We also denote N
156
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as the set of source nodes and L as the set of (logical) links
in the network.
Without perfect orthogonal channels, the receiving nodes

are interfered by the transmission powers of all the
transmitting nodes in the network. The link capacity is no
longer constant. It depends on the transmission power
vector P = [P1, P2, ..., PL] and the channel condition.

cl(P) = W log 1+ KSIRl

( )
, ∀l [ L (10)

Here, W is the symbol bandwidth and K is a constant
depending on the modulation and bit-error rate (BER). The
signal-to-interference ratio of link l is calculated by
SIRl(P) = PlGll/

∑
k=l PkGlk + nl

( )
, where Glk is the path

loss from the transmitter of link k to the receiver of link l.
We assume the transmitting power vector are bounded, that
is, Pmin ≤ P ≤ Pmax. The NUM problem for joint rate and
power control is given by the authors in [17, 18, 23]

P6: Max.
∑
s[N

Us xs
( )

s.t.
∑

s:l[L(s)

xs ≤ cl(P), ∀l [ L

Pmin ≤ P ≤ Pmax

Even with the concave objective, the joint NUM is a
non-convex problem because of the non-convexity of the link
capacity constraints. Previous studies [17, 18, 23] address
problem P6 with elastic utilities by deriving it to a convex
one. Using high-SIR assumption, Chiang [23] transforms the
NUM problem into a convex form and solves it using the
dual decomposition method. The papers in [17, 18] apply the
successive approximation method to approximate the capacity
constraints to a convex form without using high-SIR
assumption. With both elastic and inelastic traffic, the joint
NUM problem is non-convex in both the objective and the
constraints. In this section, we combine the technique in [18]
with our approach to derive an algorithm to jointly allocate
the rate and the power for multiclass traffic.
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
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4.1 Convex approximation problem

We replace P6 with the following equivalent problem

P7: Max. log
∑
s[N

Us xs
( )( )

s.t.
∑

s:l[L(s)

xs ≤ cl(P),

Pmin ≤ P ≤ Pmax

Problem P7 is also transformed into an epigraph form in
order to move the non-concave objective to the constraints

P8: Max.y

s.t. y ≤ log
∑
s[N

Us xs
( )( )

∑
s:l[L(s)

xs ≤ cl(P), ∀l [ L

Pmin ≤ P ≤ Pmax

We now derive an inequality to approximate the non-convex
constraints of P8. To clearly represent the capacity formula,
we assume that W = 1 and that K is included in the channel
gain Gll. The capacity formula (10) is rewritten as follows

cl(P) = log 1+ SIRl

( )
= log

∑
k[L

GlkPk + nl

( )
− log

∑
k=l

GlkPk + nl

( )
,

∀l [ L (11)

Lemma 4: For all vectors hl = hl
1, .., h

l
L+1

[ ]
, ∀l = 1, …, L,

such that η l > 0 and 1Tη l = 1. Let us define

ĉl P; h
l( )

W
∑
k[L

hl
k log

GlkPk

hl
k

( )
+ hl

L+1 log
nl

hl
L+1

( )

− log
∑
k=l

GlkPk + nl

( )
(12)

We have the following inequality

cl(P) ≥ ĉl P; h
l( )
, l = 1, . . . , L+ 1 (13)

Proof: Similarly to the proof of Lemma 2, from the
arithmetic-geometric mean inequality

∑L+1
k=1 hkvk ≥∏L+1

k=1 (vk)
hk , ∀v = v1, v2, . . . , vL+1

[ ]T≥ 0 and 1Tvl = 1,

we replace vk by GlkPk/h
l
k , k = 1, …, L and vL +1 by

nl/h
l
L+1. The following inequality is obtained

∑
k[L

GlkPk + nl ≥
∏
k[L

GlkPk

hl
k

( )hlk nl
hl
L+1

( )hlL+1

,

∀l = 1, . . . , L

Taking the logarithm of both sides of the above inequality
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
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yields

log
∑
k[L

GlkPk + nl

( )
≥

∑
k[L

hl
k log

GlkPk

hl
k

( )

+ hl
L+1 log

nl
hl
L+1

( )
, ∀l = 1, . . . , L

From the link capacity formula (11), we establish (13).
The equality holds if and only if

hl
k =

GlkPk∑
k[L GlkPk + nl

= GkkSIRk

Glk + GkkSIRk
, ∀k = 1, . . . , L,

hl
L+1 =

nl∑
k[L GlkPk + nl

(14)

Particularly, when k = l

hl
l =

SIRl

SIRl + 1
, ∀l = 1, . . . , L (15)

□

From Lemmas 2 and 4, we approximate P8 to a new
problem as follows

P9t:Max.y

s.t. y ≤
∑
s[N

Ũ s xs; us
( )

∑
s:l[L(s)

xs ≤ ĉl P; h
l( )
, ∀l [ L

Pmin ≤ P ≤ Pmax

Transforming back to the canonical form, we obtain the
problem

P10t:Max.
∑
s[N

Ũ s xs; us
( )

s.t.
∑

s:l[L(s)

xs ≤ c̃l P̃; h
l( )
, ∀l [ L

P̃
min ≤ P̃ ≤ P̃

max

where P̃
min
l W log Pmin

l

( )
, P̃

max
l W log Pmax

l

( )
and

c̃l P̃; h
l( )
W

∑
k

hl
k P̃k +

∑
k

hl
k log

Glk

hl
k

( )
+ hl

L+1 log
nl

hl
L+1

( )

− log
∑
k=l

Glke
P̃k + nl

( )
, ∀l [ L

(16)

Lemma 5: The function c̃l P̃; h
l( )
, ∀l [ L is a strictly

concave function.

Proof: The function c̃l P̃; h
l( )
is strictly concave because it is

in the form of an affine function minus a log-sum-exp
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function, which is strictly convex according to [28,
p. 3.1.5]. □

From Lemmas 3 and 5, P10t is a convex optimisation
problem. We utilise the Lagrange dual decomposition
method to solve P10t in the next subsection.

4.2 Solution to the approximation problem

Problem P10t is solved via its dual. The dual function is

D2(l)=max
x,P̃

L(x, P̃,l)

=max
x,P̃

∑
s[N

Ũ s xs;us
( )−∑

l[L
ll

∑
s:l[L(s)

xs− c̃l P̃;h
l( )( )( )

=max
x

∑
s[N

Ũ s xs;us
( )− ∑

l[L(s)

ll

( )
xs

( )( )

+max
P̃

∑
l[L

ll c̃l P̃;h
l( )( )

=max
x

Lx(x,l)+max
P̃

LP P̃,l
( )

(17)

where Lx(x, λ) is defined by (5) and LP P̃, l
( )

W∑
l[L ll c̃l P̃; h

l( )
. The dual problem is

min
l≥0

D2(l) (18)

Also, the dual problem (18) is solved using the gradient
projection algorithm. The gradient update is given by

l(t)l (t+1)= l(t)l (t)+k
∑

s:l[L(s)

x(t)s (t)− c̃l P̃
(t)
(t);hl(t)

( )( )[ ]+

(19)

for all l[L, where x (t)(t) and P̃
(t)
(t) are the optimal solutions

to the subproblems maxxLx(x, l) maxP̃ LP(P̃,l) given by (17)
at time instant t.
We next derive the solution to the subproblems. Lx(x, λ),

LP(P̃, l) are all concave functions in terms of x and P̃,
respectively. Hence, the optimal points of the subproblems
also satisfy the KKT conditions. The first subproblem is
exactly the same as (5), thus, the rate update is also the
update (8). The first derivative condition of the second
subproblem is

∂LP P̃, l
( )
∂P̃l

= llh
l
l −

∑
k=l

lkGkle
P̃l∑

j=k
Gkje

P̃j + nk
= 0, ∀l [ L

(20)

Transforming (20) back into P space, we obtain the power
update as follows

P(t)
l (t) = l(t)l (t)hl(t)

l∑
k=l Gklm

(t)
k (t)

[ ]Pmax
l

Pmin
l

, ∀l [ L (21)
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where

m(t)
k (t) W

l(t)k (t)SIR(t)
k (t)

P(t)
k (t)Gkk

(22)
4.3 Successive approximation algorithm for the
joint NUM

Similar to the main framework in Section 3, we propose the
following Algorithm 2 (see Fig. 3) for the joint NUM.
In Algorithm 2 (see Fig. 3), the initial value of a new

iteration is the stationary value of the previous iteration. In
step 6, each link l calculates the value ml locally according
to (22) and pass this information to all the other links in the
network for the power update in (21). In step 5, hl

l, ∀l [ L
is updated locally by (15). Each source s calculates its
utility and passes this information to all other sources in the
network to update θ according to (4).

Theorem 2: Algorithm 2 (see Fig. 3) converges to a stationary
point satisfying the KKT conditions of P6.

Proof: Beside the notations fu(x) and f̃ u(x) from the proof of

Theorem 1, we denote fc(x, P)W
∑

s:l[L(s) xs

( )
/ cl(P)
( )

and

f̃ c(x, P)W
∑

s:l[L(s) xs

( )
/ĉl P; h

(t)( )
. Similar to the proof of

Theorem 1, we need to verify the following three
conditions for the convergence to the KKT point of the
algorithm:

1. fu(x) ≤ f̃ u(x) and fc(x, P) ≤ f̃ c(x, P),

2. fu x(t)∗
( ) = f̃ u x(t)∗

( )
and fc x(t)∗, P(t)∗( ) = f̃ c x(t)∗, P(t)∗( )

,

3. ∇f (x)|x=x(t)∗ = ∇f̃ (x)|x=x(t)∗ and ∇fc(x, P)|x=x(t)∗;P=P(t)∗ =
∇f̃ c(x, P)|x=x(t)∗;P=P(t)∗ , where x(t)∗, P(t)∗( )
is the optimal solution of the tth iteration.
Condition (1) and (2) are satisfied by (3) and (13). It is
straightforward to verify condition (3) by comparing the
corresponding partial derivatives. Therefore the theorem is
proved. □
5 Numerical results

In the experiments, all the utilities in this section are
normalised or have the closed values at xmax = 10 Mbps (see
Fig. 1). The flow rates are updated according to Table 1.
xmin is 0 Mbps. The network is considered converged as all
the flow rates converge. Specifically, the stationary
conditions for inner iterations (step 6) in Algorithm 1 (see
Fig. 2) and Algorithm 2 (see Fig. 3) are (|x(t + 1)− x(t)|/x
(t)) < ε and (|P(t + 1)− P(t)|/P(t)) < ε. The stationary
conditions of the outer iterations are (|x(t + 1)− x(t)|/x(t)) < ε
and (|P(t + 1)− P(t)|/P(t)) < ε. The constant step-size κ = 0.1
and the error bound ε = 10−4, unless specified otherwise.

5.1 Convergence of the algorithm

Wewant to verify the convergence of Algorithm 1 (see Fig. 2)
in this experiment. Consider a network with a single link and
two flows (see Fig. 4a), one flow is inelastic, one flow is
elastic. Their utilities are 1/

(
1+ e−2(x1−5)) and log(x2 + 1)/
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
doi: 10.1049/iet-net.2012.0120
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log(11), respectively. With the link capacity of 6 Mpbs, which
does not satisfied the link capacity condition according to [8],
we could not find any step-size for the convergence of the
standard dual-based algorithm even with the diminishing
step-size (see Fig. 5). Using Algorithm 2 (see Fig. 3), the
solution sequence of the series of the approximation
problems converges at x* = [5.69, 0.31] Mbps and U* =
0.91 (see Fig. 6). In this case, the local optimum is also the
global optimal solution. Our proposed algorithm results to a
higher aggregate utility in comparison to the one of the
utility-proportional fair algorithm in [14] (see Fig. 7).
5.2 Two-link example

In this experiment, the network has two-links and
three-inelastic flows as described in Fig. 4b. Utility
functions are all 1/ 1+ e−(xi−5)( )

, i = 1, 2, 3. In case c = [4,
8] Mbps, Algorithm 1 (see Fig. 2) results to x* = [0, 4, 8]
Mbps and U* = 1.23. In the case of c = [7, 20] Mbps, x* =
[0, 9, 10] Mbps and U* = 1.98, which are also the optimal
values calculated from sum-of-square method in [10,
Example 3].
Fig. 4 Network topologies

a one-link topology (experiments in subsection 5.1)
b two-link topology (experiments in subsections 5.2 and 5.5)
c three-link topology (experiments in subsection 5.3)
d medium-size network (experiments in subsection 5.4)

Fig. 5 Non-convergence of the standard dual-based algorithm in
[7, 8]

One-link topology (Fig. 4a), C = 6 Mbps

IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
doi: 10.1049/iet-net.2012.0120
5.3 Varying the initial point

Given θ, the approximation problem has a unique optimal
solution due to its strict convexity. Hence, the result of
Algorithm 1 (see Fig. 2) will depend on choosing the initial

θ(0). In this experiment, we verify the result of the
algorithm when varying the initial point. Consider the
network with three indirect links and four flows as
described in Fig. 4c. The utility functions are
U1(x1) = 1/ 1+ e−(x1−2)( )

, U2(x2) = 0.1x2, U3(x3) =
log (x3 + 1)/ log (11) and U4(x4) = 1/ 1+ e−2(x4−4)( )

,
respectively. The link capacities are all 10 Mbps. We
conduct 100 experiments from 100 uniformly random initial
θ(0). The stationary aggregate utilities from Algorithm 1
(see Fig. 2) are shown in Fig. 8. A 92% of the experiments
achieve the global optimal solution which has x* = [8.67,
1.33, 3.22, 5.45] Mbps and U* = 2.68.
Fig. 6 Convergence of Fig. 2

One-link topology (Fig. 4a), C = 6 Mbps

Fig. 7 Aggregate utility of Fig. 2 compares to the
utility-proportional fair algorithm in [14]

One-link topology (Fig. 4a), C = 6 Mbps
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Table 2 Average convergence time (in seconds) with different
network sizes and stopping conditions ((|x(t + 1)− x(t)|/x(t))≤ ε).
The inner iteration updates every 10 ms and each outer iteration
includes 50 inner iterations

Number of flows ε = 1 × 10− 2 ε = 1 × 10− 3 ε = 1 × 10− 4

16 0.50 0.50 0.50
24 2.00 3.40 4.40
32 3.05 4.75 5.75
40 3.45 5.10 6.45
48 4.15 6.15 7.70
56 4.60 7.15 8.95
64 6.2 9.35 11.95
72 6.85 10.85 14.50
80 8.20 12.40 16.15

Fig. 8 Aggregate utility as randomising the initial θ(0)

www.ietdl.org
5.4 Varying the network size

In this experiment, we want to monitor the convergence time
of the proposed algorithm with different network sizes. The
heuristic implementation is used with 50 inner iterations per
outer iteration. We utilise topology in [11, Fig. 7] for the
experiment. There are four groups of flows in a network
with five links as shown in Fig. 4d. In each group, half of
the flows are elastic and the other half are inelastic. The
Fig. 9 Rate and the power generated by Algorithm 2 (see Fig. 3)
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step-size is 2 × 10− 5. We monitor the convergence time of
the algorithm as increasing the number of flows in the
groups gradually. In each case, we conduct ten experiments
from ten random initial points. The convergence time of
each case is averaged over ten results. The number of flows
in four groups vary from 24 to 80 flows. We add one
elastic flow and one inelastic flow in every group with each
increment. The link capacities are all 100 Mbps.
Assume that the link prices update in every 10 ms. Then it

takes 500 ms per outer iteration. Table 2 shows the
convergence time of the algorithm as we increase the
number of flows in the network gradually. According to
Table 2, as the number of flows in the network increases,
the convergence time of the algorithm increases. Also in the
same network condition, when the stopping condition is
more stringent, the convergence time is longer.
5.5 Jointly rate and power control

This experiment verifies Algorithm 2 (see Fig. 3) which
jointly allocates the rate and power for multiclass traffic.
We consider the network topology with three-flows and
two-directed links (Fig. 4b). Two link l1 and l2 have the
respective transmitting nodes 1 and 2. The parameters of
the simulation are W = 1 MHz; K = –1.5/log(5 BER) with
BER = 10−3 for multi-quadrate amplitude modulation
(MQAM) modulation. The channel gain is calculated by
h(d ) = ho(d/15)

−4, where ho is a reference channel gain at a
distance 15 m. The maximum and minimum power are
Pmax = 100 mW and Pmin = 5 mW, respectively. The utility
functions of the flows are

U1(x1) =
1

1+ e−10(x1−2)
, U2(x2) =

log(x2 + 1)

log(11)
and

U3(x3) =
1

1+ e−2 x3−4( )

The constant step-size in this experiment is 0.05. Fig 9 shows
the convergence of the rate and power allocation for flows and
transmitting nodes to the values x* = [2.41, 1.99, 4.72] Mbps
and P* = [0.1, 0.086] W.
IET Netw., 2013, Vol. 2, Iss. 3, pp. 152–161
doi: 10.1049/iet-net.2012.0120
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6 Conclusions

Based on the successive approximation method, we have
proposed an algorithm converging to a local optimal
solution which also satisfies the KKT conditions of the
non-convex NUM with elastic and inelastic utilities. We
also extend the framework to jointly allocate the rate and
the power for two kinds of flows in a multihop wireless
networks. It is shown that any log-concave utilities can be
applied to our framework. The numerical results show that
our proposed algorithm converges in case of scarce
resources whereas the standard dual-based algorithm does
not. The global solution can be achieved from many initial
points.
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