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Abstract—In the dynamic spectrum access (DSA), pric-
ing is an efficient approach providing economic incentives
for operators, whereas load balancing yields congestion-
avoidance incentives for secondary users (SUs). Despite
complexities of i) the couplings among pricing, load bal-
ancing and SUs’ spectrum access decision, and ii) the het-
erogeneity of primary users’ traffic and SUs classes/types,
we tackle the joint load balancing and pricing problem to
maximize operators’ revenue in two cognitive radio mar-
kets: monopoly and duopoly. For the monopoly market, we
first show there exists a unique SUs’ equilibrium arrival
rate to the monopolist’s channels. We then show that
the joint problem can be solved efficiently by exploiting
its convex structure. For the duopoly market, we first
characterize a unique SUs’ equilibrium arrival rate to two
operators employing different DSA approaches. When two
operators are noncooperative, we show that there exists
a unique Nash equilibrium for each operator’s revenue.
When they are cooperative, we show that the social revenue
optimization can achieve a unique optimal solution. Using
the Nash bargaining framework, we also present a sharing
contract that determines the optimal fraction of the social
revenue for each operator. In both markets, we propose two
algorithms that can find the largest SU class supportable
by the operators.

Index Terms—Pricing, Load Balancing, Nash Equilib-
rium, Dynamic Spectrum Access, Cognitive Radio.

I. INTRODUCTION

Dynamic spectrum access (DSA) has been introduced
to efficiently utilize scarce wireless spectrum that is
conventionally controlled via static licensing. Various
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DSA approaches, including two popular dynamic shared-
use and exclusive-use paradigms, have been proposed
to enable secondary users (SUs) to flexibly access un-
derutilized legacy spectrum that is used sporadically by
primary users (PUs) [1]–[3]. The shared use allows SUs
to opportunistically access the (secondary) operators’
“interruptible spectrum” without harming the PUs’ ac-
tivities, whereas the exclusive use allows operators to
lease parts of a temporarily unused spectrum (i.e. no
PUs operations) for SUs’ service provisioning.

In these two paradigms, pricing is one effective
market-based method to distribute spectrum from op-
erators to SUs since it not only provides economics
incentives for operators, but also has the low-overhead
operation [4]–[6]. However, for a given operator’s price,
various SU applications (classes) with distinguished
physical conditions (types) will have different spectrum
access decisions. Therefore, if the heterogeneity of SUs’
classes and types is considered, how to design an effi-
cient pricing mechanism to achieve the optimal revenue
for operators is one of the market-based challenges.

While pricing provides an economics incentive for
operators, load balancing, which distributes the SUs’
traffic loads to right channels, provides a congestion-
avoidance incentive for SUs [7]–[9]. Nevertheless, SUs’
congestion is influenced by service times of the opera-
tor’s channels, which are affected by varying PUs traffic
patterns. Hence, if the heterogeneity of PU traffic is
considered, how to design a low-complexity mechanism
that can distribute SUs traffic evenly on all channels is
one of the load balancing challenges.

In this work, by incorporating the heterogeneity of
PUs’ traffic and SUs’ types and conditions, we study a
joint pricing and load balancing spectrum access control
in multi-channel cognitive radio networks (CRNs). This
joint problem can be illustrated as a two-level structure in
Fig. 1. At the operator level, in every beginning period
of all stationary statistics, the operator will decide the
corresponding prices and load balancing information to
maximize its revenue. Based on the information, at the
SU level, an arriving SU with a specific application and
physical condition will decide whether or not to join the
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operator to maximize its expected utility. We see that
how SUs make joining decisions depends on both price
and load balancing information of the operator, and how
the operator sets its prices and load balancing depends
on SUs’ joining policy. Hence, there are certain cou-
plings not only between pricing and load balancing, but
also between these information and SUs’ joining policy.
Separately considering only pricing or load balancing in
multi-channel CRNs will lead to suboptimal solutions
of the operator’s revenue optimization. Therefore, by
tackling this joint problem, our contributions can be
summarized as follows.

• The first network scenario is a monopoly mar-
ket with one operator employing shared-use DSA.
Given the operator’s load balancing and prices,
we first characterize the SUs’ joining policy and
show that there exists a unique SUs’ equilibrium
arrival rate to a parallel M/G/1 queueing system
modelling the operator’s channels with PU traffic.
By integrating this equilibrium constraint into the
operator’s revenue maximization problem, we then
show that this problem can be solved efficiently by
a sequential optimization method, which reveals its
convex structure. We also propose an algorithm that
can find the largest SU class supportable by the
operator.

• The second network scenario is a duopoly mar-
ket with two operators employing shared-use and
exclusive-use DSAs, respectively. We first charac-
terize the SUs’ joining policy and show the ex-
istence of a unique SUs’ equilibrium arrival rate
to both operators. We then investigate their in-
teractions through two behaviors: non-cooperation
and cooperation. In the noncooperative case, we
show that there exists a unique Nash equilibrium.
In the cooperative case, we show that the social
revenue optimization problem can be splitted into
two convex problems that can be solved by each op-
erator to achieve a unique optimal solution. Before
jointly optimizing the social revenue, both operators
can agree on a sharing contract that determines a
fraction of the total revenue for each operator. Using
the Nash bargaining framework, we show that there
exists a unique solution of this sharing fraction.
Finally, we propose an algorithm that can find the
largest SUs class supportable by both operators.

The rest of this paper is organized as follows. Sec-
tion II presents related work. We analyze the monopoly
and duopoly markets in Section III and Section IV,
respectively. Section V provides numerical results and
Section VI concludes our work.
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Fig. 1. Two-level structure between operators and SUs.

Due to space limitations, all missing proofs can be
found in the technical report available online [10].

II. RELATED WORKS

In the literature, pricing and load balancing are two
DSA research directions. On the one hand, there are
many interests in load balancing spectrum control in
multi-channel CRNs [7]–[9]. Using the non-preemptive
priority M/G/1 queueing model, [9] proposed a dynamic
learning scheme to determine a load balancing strategy
that can converge to a Nash equilibrium, which is not
necessarily a global optimal point. In contrast, with a
preemptive resume priority M/G/1 queueing model, [7]
tried to minimize the system time by providing the opti-
mal channel selection solution which, however, relies on
the numerical optimization that uses a high-complexity
exhaustive search algorithm. Using the M/M/1 queueing
model, the recent work [8] suggested a low-complexity
optimal load balancing algorithm based on convex opti-
mization theory; however, its channels were restricted to
exponential distributions.

On the other hand, pricing methods, which address the
DSA economic aspect, have recently received tremen-
dous attention. One of the main interests includes leasing
and pricing mechanisms in a three-tier market: spectrum
owners, operators and SUs [11]–[13]. The other key
direction focuses on the pricing schemes in the two-
tier market between operators and SUs, which either
characterizes the competition between multiple operators
[4]–[6], multiple SUs [14], or interactions between oper-
ators and SUs [15], [16]. However, most of these papers
characterize SUs’ responses via their demand functions,
such as bandwidth requirement. There are few papers
that consider the pricing impact on SUs’ equilibrium
behaviors in a strategic queueing system as compared
with our work in which SUs make their joining decisions
strategically based on their perceived queueing delay.
Pricing in the strategic queueing system, originated from
[17] (see [18] for the survey), can be categorized into
the observable [19] and unobservable queueing systems
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[20]–[22], where the latter model is adopted in this
work due to its practical meaning in the CR context.
Resorting on M/M/1 analysis, while [20] proposed a
pricing scheme to maximize a monopolist operator’s
revenue, [21] accounted for a socially-maximizing pric-
ing mechanism. However, both consider homogeneous
SUs with the same class and type, which is an over-
simplified model. The recent work [22] investigated not
only revenue but also socially-optimal pricing schemes;
however, its assumptions are limited to a single-channel
case and the same type for all SUs.

By taking heterogeneous SUs’ classes and types
into account, we overcome many previous simplified
assumptions to study the jointly optimal pricing and
load balancing with low-complexity mechanisms. This
problem is important to multi-channel CRNs, since it
can optimally characterize both the operators’ economic
issue and the SUs’ spectrum access behaviors due to their
mutual interactions. This mutual dependence will lead to
suboptimal solutions of the revenue optimization if we
consider only either pricing or load balancing issue.

III. MONOPOLY

In this section, we first present the system model, how
SUs make their joining policy, and SUs’ equilibrium with
the given price and load balancing of the operator. Based
on these information, how the operator maximizes its
revenue is studied later.

A. System Model

In this monopoly market, we consider a network
that consists of one operator with multiple shared-use
channels. A sequence of SUs jobs are assumed to arrive
at the network and each SU will make a decision as to
either join this operator or balk for its job (cf. Fig.2). The
model in this section can be described quantitatively as
follows.

1) Shared-use Monopolist Operator: We assume that
the operator has a set of channels denoted by L =
{1, . . . , L} that are licensed to legacy PUs. Traffic pat-
terns of PUs can be modelled as an ON-OFF renewal
process alternating between ON (busy) and OFF (idle)
periods. On each channel l ∈ L, the sojourn times of
the ON and OFF periods are modelled by i.i.d. random
variables (r.v.) Yl and Zl, with probability density func-
tions (pdf) fYl

(y) and fZl
(z), respectively. ON and OFF

periods are assumed to be independent with SUs’ arrival
process and service time. This ON-OFF process can be
considered a channel model for the SU services. This
model captures the idle time period in which the SUs can
utilize the channel without causing harmful interference

Λ1+ ...+ΛK
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s2, p2

sL, pL

X

X

Balk
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Y2 Z2
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Fig. 2. Class-k SUs arrives with rate Λk at a monopoly system with
L shared-used channels (with PU traffic as ON/OFF process) and
admission price and load balancing vectors, ~p and ~s, respectively.

and SUs’ service can be interrupted due to incoming
PUs’ traffic with higher priority.

The shared-use operator allows SUs to share the
PUs’ channels opportunistically to gain revenue. Before
each period of all stationary distributions, the operator
broadcasts a load balancing vector ~s = {sl}l∈L and an
admission price vector ~p = {pl}l∈L to all potential SUs.
While ~s with

∑L
l=1 sl = 1 probabilistically guides the

SUs in selecting channels, ~p helps SUs decide whether
or not to join the network.

2) SUs: We assume that there is a set of classes of
SUs denoted by K = {1, . . . ,K} in the network where
class-k SUs arrive at the network according to a Poisson
process with a potential rate Λk, ∀k ∈ K. Each class-
k SU carries a distinct job (e.g. a packet, session, or
connection) upon arrival and its job is associated with
a specific delay-sensitive application characterized by
a value θk. For example, multimedia applications with
stringent delay requirements will have high values of θk.
Without loss of generality, we assume 0 < θ1 < . . . <
θK

1. The requested time to complete a SU’s job is
represented by a r.v. X with pdf fX(x). This r.v. is
assumed to be independent of the arrival process. We
denote the expectation of any r.v. X by X .

We further assume that each SU belonging to a type
α has a monetary evaluation value αr about the opera-
tor’s service, where r is the operator’s intrinsic quality
(e.g. the coverage area and/or the aggregated channels
capacity) and α is a random variable characterizing the
heterogeneity of SUs under the same operator’s quality
which depends on independent SUs’ physical conditions
such as fast fading, location, random moving, etc. The
common technique that can be used to estimate α is
conjoint analysis [23]. We assume that α follows a

1If two classes m and n have θm = θn, we can merge them into
one class with potential arrival rate Λm + Λn.
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uniform distribution on [0, 1], which is widely used in
the literature [24]–[26], with their cumulative distribution
function F (·). One of the main reasons to assume α with
uniform distribution is for the analysis tractability.

When a potential SU arrives at the network, it makes
a decision: either join the network or balk. The utility of
any balking SU is set to zero. For given ~s and ~p from
the operator, the utility of a class-k type-α SU that joins
channel l is modelled by

Uk,l(α, sl, pl) = αr − θkdl(sl)− pl, ∀k, l. (1)

This utility function is perceived by a class-k type-α SU
as the difference between net benefit αr−pl and a delay
disutility θkdl(sl) representing the delay cost of the SU’s
job with delay dl(sl) in channel l and a delay cost per
unit time θk. We note that this utility is generalized to
capture the heterogeneity of both user types (i.e. α) and
classes (i.e. θk). In the literature, most utility functions
either have the same value r [22] or θk [27] for all users.
A variant form is αql − pl [24], [28], where the QoS
function ql presents an inverse effect of our congestion
function dl.

3) Steady-State Queueing Delay: Since many SUs
may attempt to share the same licensed channel l ∈ L,
congestion can occur, which will affect the delay dl(sl)
of each SU job. An arriving SU at this channel will be
informed of its job’s delay in a queue containing other
SU jobs that also wish to use that licensed channel.
Therefore, the operator is assumed to maintain a parallel
queueing system of L M/G/1 queues (cf. Fig. 2) whose
service time of each queue l, denoted by a random
variable χl, has a general distribution dictated by fX(x),
fYl

(y) and fZl
(z). We denote T l (λl) the mean steady-

state queueing delay (i.e. waiting time + service time)
induced by an effective arrival rate λl. Denoting the
first and second moments of channel l’s service time
by χl and χ2

l , respectively, we have the extended-value
mean queueing delay defined as follows according to the
Pollaczek-Khinchin formula [29]

T l (λl) =





λl
χ2

l

2
(
1−λl

χ
l

) + χl, if λl < 1/χl;

∞, otherwise.
(2)

This definition can eliminate the explicit condition
λl < 1/χl in our arguments hereafter. It turns out that
by deriving χl and χ2

l , we can complete the queueing
delay model. Without loss of generality, we also assume

0 < χ1 < . . . < χL
2.

We assume that a SU can use its spectrum sensing
and handoff capabilities to detect and protect the PUs.
Spectrum sensing is used to inform the SU whether the
channel is busy or idle. When the channel is sensed to
be idle, the SU job can be in service. When the channel
is sensed to be busy, the spectrum handoff interrupts the
current SU’s service, returns the channel to the PUs, and
resumes the SU’s service when the PU leaves. Using the
renewal theory to handle multiple interruptions due to
spectrum handoffs, we have derived χl and χ2

l in [22]
as follows

χl = X

(
1 +

Yl

Zl

)
, (3)

χ2
l = X2

(
1 + 2

Yl

Zl

)
+ Y 2

l

(
X

Zl
+ g(X)

)
, (4)

where the Laplace transform of g(X | X = x) is

g∗(s) =
2

s2Zl

f∗Zl
(s)

1− f∗Zl
(s)

, (5)

and f∗Zl
(s) is the Laplace transform of fZl

(z). Let λk
denote the effective arrival rate of class-k SUs into the
system. Due to the load balancing control ~s, the effective
arrival rate into channel l is λl(sl) = sl

∑K
k=1 λk. Then,

the utility function in (1) can be rewritten

Uk,l(α, sl, pl) = αr − θkT l (λl(sl))− pl, ∀k, l. (6)

B. SUs’ Decision Policy and Equilbrium

We assume that the SUs are rational decision-makers
in that they only join the network when their utilities are
positive (Individual Rationality). Therefore, we have:

Definition 1. A class-k type-α SU in channel l with its
utility Uk,l(α, sl, pl) will follow a joining decision policy
such that

• it joins the channel l if Uk,l(α, sl, pl) > 0, which
requires α > αk,l (λl(sl)), where

αk,l (λl(sl)) :=
θkT l (λl(sl)) + pl

r
; (7)

• it balks, otherwise.

2If two channels m and n have the same first moment value, we
can order them according to the second moment value. If they have
the same first and second moments, we can merge them into a virtual
channel v with χv = χm = χn such that for given sv and pv from
the operator, each of the channels m and n will have equally sv/2
and pv/2.
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Then, the effective arrival rate of class-k SU into
channel l, defined by λk,l := slλk, is as follows

λk,l = slΛk Pr
[
Uk,l(α, sl, pl) > 0

]

= slΛk Pr [α > αk,l (λl(sl))]

= slΛk

(
1− F

(
αk,l

(∑K

k=1
λk,l

)))
. (8)

Proposition 1. For given ~p and ~s of a shared-use
monopolist operator, there exists a unique equilibrium
arrival rate λeq

k,l of the class-k SU into channel l such
that

1) if pl ≥ r − θkχl, then

λeq
k,l = 0, (9)

2) if pl < r − θkχl, then

λeq
k,l = slΛk

(
1− αk,l

(∑K

k=1
λeq
k,l

))
> 0. (10)

C. Operator’s Revenue Maximization

In this subsection, we formulate the revenue maxi-
mization problem and present a sequential optimization
method, based on which we can achieve the optimal
solution and algorithm.

1) Problem Formulation: At this stage, the operator
temporarily assumes that there exists a unique SUs’
equilibrium λeq

k,l > 0, ∀k, l. Based on this knowledge,
the operator’s objective is to maximize its revenue, which
can be formulated as the following optimization problem

maximize
~s,~p

∑L

l=1
plλ

eq
l

subject to λeq
k,l = slΛk

(
1− αk,l

(∑K

k=1
λeq
k,l

))
, ∀k, l,

∑L

l=1
sl = 1,

0 ≤ sl ≤ 1, pl ≥ 0, ∀l.
(11)

The first constraint is the SUs’ equilibrium knowledge
from Proposition 1, whereas the second constraint is the
load balancing constraint and the third constraint is the
operational space of ~s and ~p. This problem is a non-
convex optimization problem, which is difficult to solve.

From the first constraint of (11), the equilibrium
arrival rate into channel l can be obtained as

λeq
l =

∑K

k=1
λeq
k,l = sl

(
Λ− ΩT l

(
λeq
l

)
+ Λpl

r

)
, (12)

where Λ :=
∑K
k=1 Λk and Ω :=

∑K
k=1 Λkθk. From (12),

we have

pl(sl, λ
eq
l ) = r − r

Λ

λeq
l

sl
− Ω

Λ
T l
(
λeq
l

)
. (13)

Eliminating the first constraint of problem (11) by sub-
stituting (13) into the objective function, we obtain an
equivalent optimization problem as follows

maximize
~s,
−→
λeq={λeq

l }l∈L

∑L

l=1
rλeq

l −
r

Λ

(λeq
l )2

sl
− Ω

Λ
λeq
l T l

(
λeq
l

)

subject to
∑L

l=1
sl = 1,

0 ≤ sl ≤ 1, ∀l.
(14)

We observe that problem (14) reveals a structure that can
be solved efficiently by using a sequential optimization
technique as follows.

2) Sequential Optimization: First, by fixing
−→
λeq, prob-

lem (14) is equivalent to

maximize
~s

∑L

l=1
− r

Λ

(λeq
l )2

sl

subject to
∑L

l=1
sl = 1, ∀l,

0 ≤ sl ≤ 1, ∀l.

(15)

It can be seen that (15) is a convex problem. Using the
necessary and sufficient KKT condition, the solution of
(15) can be obtained as follows

s∗l =
λeq
l∑L

l=1 λ
eq
l

, ∀l. (16)

Substituting (16) back into (14) and introducing an
auxiliary variable λeq

tot =
∑L
l=1 λ

eq
l , we have an equiva-

lent problem of (14) as follows

maximize rλeq
tot −

r

Λ

(
λeq

tot

)2 − Ω

Λ

∑L

l=1
λeq
l T l

(
λeq
l

)

subject to
∑L

l=1
λeq
l = λeq

tot,

variables λeq
tot,
−→
λeq ≥ 0.

(17)

Lemma 1. Problem (17) is a convex optimization prob-
lem.

The Lagrangian of this problem is L
(
λeq

tot,
−→
λeq, µ

)
=

Ltot
(
λeq

tot, µ
)

+
∑L
l=1 Ll

(
λeq
l , µ

)
, where

Ltot
(
λeq

tot, µ
)

= rλeq
tot −

r

Λ

(
λeq

tot

)2
+ µλeq

tot, (18)

Ll
(
λeq
l , µ

)
= −Ω

Λ
λeq
l T l

(
λeq
l

)− µλeq
l , ∀l. (19)

It is easy to see that Ltot
(
λeq

tot, µ
)

is a strictly concave
function of λeq

tot for a given µ, and we also have
Ll
(
λeq
l , µ

)
is a strictly concave function of λeq

l , ∀l, for a
given µ from Lemma 1. Using the first-order condition,
we can obtain the unique optimal solutions for a given
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µ as follows

λeq
tot (µ) =

Λ(r + µ)

2r
, (20)

λeq
l (µ) = [Φl (µ)]+ , ∀l, (21)

where [.]+ := max {0, .} and

Φl (µ) :=
2 (µΛ + Ωχl)

−ζl(µ)−
√

Ωχ2
l ζl(µ)

, (22)

with ζl(µ) = Ω
(
χ2
l − 2χ2

l

)
− 2Λχlµ. We have the

following property.

Lemma 2. Φl(µ) is continuous, strictly decreas-
ing, positive on

(
−∞,−Ω

Λ
χl
)

, and non-positive on
[
− Ω

Λ
χl,−Ω

Λ

(
χl −

χ2
l

2χl

))
, ∀l.

3) Optimal Solutions: We can achieve the optimal
solution λeq

tot (µ∗) and λeq
l (µ∗), ∀l, by finding the op-

timal dual variable µ∗ that satisfies the first constraint∑L
l=1 λ

eq
l (µ) = λeq

tot (µ) of problem (17). Thus, we have
the following result.

Lemma 3. If

τmo := r >
Ω

Λ
χ1, (23)

there exist a unique solution µ∗ ∈
(
−τmo,−Ω

Λ
χ1

)
of

∑L
l=1 [Φl (µ)]+ = λeq

tot (µ) and a corresponding channel
index 1 ≤ L∗ ≤ L such that Φl (µ

∗) > 0, ∀l ≤ L∗,
and Φl (µ

∗) = 0, ∀l > L∗. If τmo ≤ Ω
Λ
χ1, [Φl (µ)]+ =

λeq
tot (µ) = 0, ∀l.

We further illustrate this lemma numerically in Fig. 6
in Section V. With this unique µ∗, we obtain the unique
solution λeq

tot (µ∗) and λeq
l (µ∗) , ∀l, as per (20) and (21),

which is also the global unique optimal solution of
problem (17) since µ∗, λeq

tot (µ∗) and λeq
l (µ∗) satisfy the

necessary and sufficient KKT condition [30]. Substitut-
ing these values into (16) and (13), we can achieve s∗l
and p∗l , ∀l.

Proposition 2. With µ∗ and L∗ from Lemma 3, the load
balancing and pricing optimal solutions of operator’s
revenue maximization problem are unique as follows

s∗l =
Φl (µ

∗)

λeq
tot (µ∗)

, ∀l ≤ L∗, (24)

p∗l = [pl(s
∗
l ,Φl (µ

∗))]+ from (13), ∀l ≤ L∗, (25)

s∗l = 0 and p∗l = 0, ∀l > L∗. (26)

4) Algorithm: The optimal solution of the operator’s
revenue maximization problem provided by Proposi-
tion 2 is based on the assumption that λeq

k,l > 0,
∀k, l, which is not always true. Therefore, we propose
Algorithm 1 to search for a class K∗ ≤ K such that
the optimal solutions in Proposition 2 corresponds to
λeq
k,l > 0, ∀ l ≤ L∗, k ≤ K∗. We can consider K∗ the

largest class that can be supportable by the operator. We
have the following property on which Algorithm 1 relies.

Lemma 4. Defining Λ(k) :=
∑k
j=1 Λj and Ω(k) :=

∑k
j=1 Λjθj ,

Ω(k)
Λ(k) is increasing in k ∈ K.

Proof: Since Ω(k+ 1) = Ω(k) + Λk+1θk+1, Λ(k+
1) = Λ(k) + Λk+1, we have

Ω(k + 1)

Λ(k + 1)
− Ω(k)

Λ(k)
=

Λk+1

(
Λ(k)θk+1 − Ω(k)

)

Λ(k)
(
Λ(k) + θk+1

) > 0.

Algorithm 1 Optimal Pricing and Load-Balancing in the
Monopoly Market

1: The operator collects χl, χ2
l , ∀l and Λk, θk,∀k

2: i← arg maxk∈K
{
r > Ω(k)

Λ(k)
χ1

}

3: update p∗l (i), s∗l (i) and L∗(i) by Proposition 2 with
Λ(i), Ω(i)

4: while p∗l (i) ≥ r − θiχl for some l ≤ L∗(i) do
5: i← i− 1
6: repeat step 3
7: end while
8: K∗ ← i, p∗l ← p∗l (K

∗), s∗l ← s∗l (K
∗), ∀l

9: Operator broadcasts p∗l , s
∗
l and T l

(
λeq
l (µ∗)

) ∀l, and
all SUs join the network by Definition 1.

Proposition 3. If

r > θ1χ1, (27)

Algorithm 1 always returns a class K∗ ≥ 1.

Proof: We prove by contradiction. Assuming that
Algorithm 1 cannot return any optimal class, which
means in the worst case with a single class k = 1, we
have p∗l (1) ≥ r− θ1χl > 0 for some 1 ≤ l ≤ L∗(i) with
condition (27), which means λeq

1,l = 0 according to (9),
implying s∗l (1) = 0 by (16), leading to p∗l (1) = 0 for
theses ls according to (26), which is a contradiction.

Remark 1. i) Since θ1χ1 is the smallest cost that can
be experienced by a potential SU (without queueing
delay and with zero price), condition (27) precludes
a trivial scenario where no SU has any incentive to
join the operator. ii) In line 1 of Algorithm 1, all
parameters can be estimated by the existing method [31]
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and through some feedback mechanisms from the SUs.
The algorithm then determines the largest supportable
class i (line 2), where we can always find such a class
i ≥ 1 with condition (27). According to Lemma 4,
condition (23) is always satisfied with Ω(j)

Λ(j) , ∀j ≤ i.
Thus, by Proposition 2, we always obtain p∗l (j), s∗l (j)
and L∗(j), ∀j ≤ i in line 3 of Algorithm 1. Hence, the
algorithm keeps lowering this largest class until, if it is
possible, there is a class K∗ and the corresponding L∗

satisfying condition p∗l < r − θkχl, ∀l ≤ L∗, k ≤ K∗

(lines 3 to 8 of Algorithm 1), which induces λeq
k,l > 0,

∀l ≤ L∗, k ≤ K∗ according to Proposition 1. iii) In
line 3, Algorithm 1 needs to compute µ∗ satisfying
Lemma 3. This µ∗ can be found using a bisection method
with a constant complexity3. Hence, Algorithm 1 has
a complexity O(K). vi) The system can operate on
sequential time slots where Algorithm 1 runs repeatedly
in each slot with fixed channel distributions such that all
incoming SUs can receive broadcast information (line 9)
from the operator in any time slot.

IV. DUOPOLY

In this section, we first present the system model
and how SUs choose which operator to join and their
equilibrium with the given price and load balancing of
two operators. Based on these information, how these
two operators noncooperatively and cooperatively, re-
spectively, maximize their revenues are investigated later.

A. System Model

We assume that there are two wireless network opera-
tors providing different DSA models. The first operator,
denoted by O1, uses the shared-use model, whereas the
second operator, denoted by O2, employs the exclusive-
use model. A sequence of SUs’ jobs is assumed to arrive
at the network and each SU will make a decision as to
which operator to join for its job (cf. Fig. 3). The model
in this section can be described quantitatively as follows.

1) Shared-use Operator (O1): The model of this
operator is similar to Section III-A1. However, given ~s
and ~p from O1, SUs will see the service of O1’s channels
in the average sense: the average delay

∑L
l=1 slT l (λ1,l)

and average price
∑L
l=1 slpl. Therefore, O1 can simplify

the pricing structure by only setting a single price p1

instead of ~p to replace for
∑L
l=1 slpl. Hence, the utility

of a class-k type-α SU with O1 is

U1,k(α,~s, p1) = αr1 − θk
∑L

l=1
slT l (λ1,l)− p1, (28)

where r1 is the intrinsic quality of O1’s channels and
λ1,l is the effective arrival rate into channel l of O1.

3It depends on chosen starting points and a tolerance value [32].

O2

Balk

Λ1 + ...+ ΛK 

O1

sL

s1

s2 p1 p2

Fig. 3. A duopoly between shared-use and exclusive-use operators.

2) Exclusive-use Operator (O2): The operator O2

is assumed to obtain (i.e. via leasing) the part of the
spectrum which is temporarily unused by the spectrum
owner. This spectrum chunk is divided into multiple
bands that have the same bandwidth as that of O1’s
channels. Since there is no PU traffic on these bands,
SU services are not interrupted in this case.

Whenever an arriving SU decides to join O2, the
operator allocates a dedicated channel for the SU. We
assume that O2 always has enough dedicated channels
to serve the SUs4. Therefore, we can consider O2 to be
a M/G/∞ queueing system where queueing delays of all
SUs are equal to X . From (1), the utility of a class-k
type-α SU with O2 is

U2,k(α, p2) = αr2 − θkX − p2, ∀k, (29)

where r2 is the intrinsic quality of O2 channels. Since
O1 with interruptible service always has higher delay
cost than O2’s dedicated channels, O1 needs to have
better intrinsic quality in order to survive in the market.
Hence, we assume that r1 > r2. An example is that O2

is an incumbent, whereas O1 is an entrant with a wider
coverage area.

B. SUs’ Decision Policy and Equilbrium

We denote the type of class-k critical users of O1

and O2 by α1,k and α2,k such that U1,k(α1,k, ~s, p1) = 0
and U2,k(α2,k, p2) = 0, respectively. Since λ1,l =

sl
∑K
k=1 λ1,k, we have

α1,k

(−−→
λ1,k

)
=
θk
∑L
l=1 slT l

(
sl
∑K
k=1 λ1,k

)
+ p1

r1
, (30)

α2,k =
θkX + p2

r2
, (31)

where
−−→
λ1,k = {λ1,k}k∈K is the vector of effective arrival

rate into O1 of K classes of SUs. We also denote

4We can relax this assumption by borrowing/leasing more channels
from other homogeneous operators when O2 lacks the dedicated
channels [2], [33].
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the type of class-k indifferent user by α̃k such that
U1,k(α̃k, ~s, p1) = U2,k(α̃k, p2). Then we have

α̃k
(−−→
λ1,k

)
=
r1 α1,k

(−−→
λ1,k

)− r2 α2,k

r1 − r2
. (32)

Since SUs are rational decision-makers, they choose
to join Oi if their utilities with Oi are not only positive
(Individual Rationality) but also higher than those of the
other operator (Incentive Compatibility). Hence, we have

Definition 2. A class-k type-α SU that has U1,k(α,~s, p1)
with O1 and U2,k(α, p2) with O2 will follow a joining
decision policy such that
• it joins O1 if U1,k(α,~s, p1) > 0 and
U1,k(α,~s, p1) > U2,k(α, p2), which requires

α > α1,k

(−−→
λ1,k

)
and α > α̃k

(−−→
λ1,k

)
, (33)

• it joins O2 if U2,k(α, p2) > 0 and U2,k(α, p2) ≥
U1,k(α,~s, p1), which requires

α > α2,k and α < α̃k
(−−→
λ1,k

)
, (34)

• it balks if U1,k(α,~s, p1) ≤ 0 and U2,k(α, p2) ≤ 0,
which requires

α ≤ α1,k

(−−→
λ1,k

)
and α ≤ α2,k. (35)

With SUs’ joining policy defined as above, the ef-
fective arrival rate of class-k SUs into O1 and O2,
respectively, are as follows:

λ1,k = Λk Pr
[
α > α1,k

(−−→
λ1,k

)
and α > α̃k

(−−→
λ1,k

)]

= Λk

∫ 1

max

{
α̃k

(−−→
λ1,k

)
, α1,k

(−−→
λ1,k

)} dF (α), (36)

λ2,k = Λk Pr
[
α2,k < α < α̃k

(−−→
λ1,k

)]

= Λk

∫ α̃k

(−−→
λ1,k

)

α2,k

dF (α). (37)

Based on (36) and (37), we have the following result.

Proposition 4. For a given ~s, p1 of O1 and p2 of O2 in a
duopoly market, there exists a unique pair of equilibrium
arrival rates λeq

1,k and λeq
2,k of the class-k SUs ∀k ∈ K

into O1 and O2, respectively, such that
1) if p2 ≥ βup

k (~s, p1), then

λeq
1,k = Λk

(
1− F (α1,k

(−−→
λeq

1,k

)))
, (38)

λeq
2,k = 0, (39)

2) if βlo
k (~s, p1) < p2 < βup

k (~s, p1), then

λeq
1,k = Λk

(
1− α̃k

(−−→
λeq

1,k

))
> 0, (40)

λeq
2,k = Λk

(
α̃k
(−−→
λeq

1,k

)− α2,k

)
> 0, (41)

3) if p2 ≤ βlo
k (~s, p1), then

λeq
1,k = 0, (42)

λeq
2,k =

(
1− F (α2,k)

)
, (43)

where

βup
k (~s, p1) = θk

(
r2

∑L

l=1
slχl − r1X

)
+
r2

r1
p1,

βlo
k (~s, p1) = θk

(∑L

l=1
slχl −X

)
+ r2 − r1 + p1.

We see that there is an interaction between O1 and
O2’s decisions on (~s, p1) and p2, respectively. If p2 is
greater than a value βup

k (~s, p1), O1 becomes a monop-
olist as case (1). In contrast, if p2 is less than a value
βlo
k (~s, p1), O2 becomes a monopolist as case (3). There-

fore, we can consider βlo
k (~s, p1) and βup

k (~s, p1) the lower
and upper thresholds, respectively, for the operational
range of p2 in order to have duopoly coexistence between
O1 and O2 in case (2).

Cases (1) and (3) correspond to the shared-use and
exclusive-use monopolist analyzed in Section III and
[22], respectively. Henceforth, we will focus only on the
duopoly market of case (2). If the condition of case (2)
is satisfied ∀k, the total equilibrium arrival rates to O1

and O2 are, respectively, as follows:

λeq
1 =

∑K

k=1
λeq

1,k = Λ− α̃ (λeq
1

)
, (44)

λeq
2 =

∑K

k=1
λeq

2,k = α̃
(
λeq

1

)− α2, (45)

where α1(λeq
1 ) =

∑K
k=1 Λkα1,k, α2 =

∑K
k=1 Λkα2,k, and

α̃
(
λeq

1

)
=
∑K
k=1 Λkα̃k.

C. Duopoly: NonCooperative Operators

In this subsection, we study the noncooperative case as
a one-shot game and characterize the Nash equilibrium
of this game.

1) Game Formulation: Based on the SUs’ equilibrium
arrival rates in (44) and (45), the operators will compete
with each other to maximize their revenues, which can
be modelled as the following one-shot game:

• Players: O1 and O2,
• Strategies: O1 determines ~s and p1; O2 determines
p2,

• Payoff functions: π1 (~s, p1; p2) = λeq
1 p1 and

π2 (p2;~s, p1) = λeq
2 p2.

In order to find the Nash equilibria of this game, we
investigate the operators’ best responses first.
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2) O1’s best response: The following optimization
problem captures O1’s best response

maximize
~s, p1

λeq
1 p1

subject to λeq
1 = Λ− α̃ (λeq

1

)
,

∑L

l=1
sl = 1,

0 ≤ sl ≤ 1, ∀l.

(46)

The first constraint is equivalent to

p1
(
λeq

1 , ~s; p2
)

= p2 −
r1 − r2

Λ
λeq

1 + r1 − r2

+
Ω

Λ

(
X −

∑L

l=1
slT l

(
slλ

eq
1

))
. (47)

Eliminating the first constraint by substituting (47)
into the objective function of problem (46) and intro-
ducing the new variables

λeq
1,l := slλ

eq
1 , ∀l, (48)

we obtain the following equivalent optimization problem

max.

(
ΩX

Λ
+ p2 + r1 − r2

)
λeq

1 −
(r1 − r2)

Λ

(
λeq

1

)2

− Ω

Λ

∑L

l=1
λeq

1,lT l
(
λeq

1,l

)

s.t.
∑L

l=1
λeq

1,l = λeq
1 ,

λeq
1,l ≥ 0, ∀l,

var. λeq
1 ,
−→
λeq

1,l = {λeq
1,l}l∈L.

(49)
We see that the problem (49) has the same convex

structure as problem (17). Similarly, using the first-order
necessary and sufficient condition, we have

λeq
1 (p2; ν) =

XΩ + Λ(ν + p2 + r1 − r2)

2(r1 − r2)
(50)

λeq
1,l (ν) = [Φl (ν)]+ , ∀l, (51)

where ν is a dual variable associated with the first
constraint. Then, O1’s best response with a given ν is
defined as follows

BR1(p2; ν) := {~s (p2; ν) , p1 (p2; ν)} , (52)

where

sl (p2; ν) =
Φl(ν)

λeq
1 (p2; ν)

, ∀l, and (53)

p1 (p2; ν) := p1

(
λeq

1 (p2; ν) , ~s (p2; ν)
)

(54)

from (48) and (47), respectively.
Then we can find ν∗, which is the solution of the

following equation
∑L

l=1
[Φl (ν)]+ = λeq

1 (p2; ν) , (55)

such that λeq
1 (p2; ν∗) and λeq

1,l (ν
∗) = [Φl (ν

∗)]+ , ∀l are
the unique optimal solutions of problem (49). Therefore,
O1’s best response, which is the optimal solution of (46),
is BR1(p2; ν∗).

3) O2’s best response: The following optimization
problem captures O2’s best response

maximize
p2≥0

λeq
2 p2

subject to λeq
2 = α̃

(
λeq

1

)− α2.
(56)

Eliminating the first constraint by substituting into the
objective function and using the first-order condition, we
obtain the best response of O2

BR2(~s, p1) := p2(~s, p1)

=
Ω

2Λ

(
r2

r1

∑L

l=1
slT l

(
slλ

eq
1

)−X
)

+
r2

2r1
p1. (57)

4) Nash Equilibrium: Based on the best responses of
O1 and O2, we can find the Nash equilibria of this game,
denoted by

(−→
sna, pna

1

)
and pna

2 , through the intersections
of two best responses (52) and (57). Specifically, for a
given ν, any pair of

(−→
sna, pna

1

)
and pna

2 must satisfy
(−→
sna, pna

1

)
= BR1(pna

2 ; ν), (58)

pna
2 = BR2(

−→
sna, pna

1 ). (59)

Substituting (58) into (59), we have

pna
2 = BR2(BR1(pna

2 ; ν)), (60)

Substituting (52) into (57) to solve (60), we see that there
exists a pna

2 for a given ν as follows

pna
2 (ν) =

−r2ν + r2(r1 − r2)

(4r1 − r2)
− Ω

Λ

X(2r1 − r2)

(4r1 − r2)
. (61)

From (61), we see that pna
2 only depends on dual variable

ν of problem (49). Therefore, if we can find a condition
such that a unique νna exists, then we would have a
corresponding unique pna

2 (νna).
By substituting (61) into (50), we have

λeq
1

(
pna

2 (ν); ν
)

=
Λ(2r1 − r2)ν + r1(XΩ + 2Λ(r1 − r2))

(r1 − r2) (4r1 − r2)
.

(62)

Denoting λeq
1 (ν) = λeq

1

(
pna

2 (ν); ν
)
, we see that λeq

1 (ν)
must satisfy the constraint (55). We have the following
result, which can be proved similarly as Lemma 3.

Lemma 5. If

τna :=
r1(XΩ + 2Λ(r1 − r2))

Λ(2r1 − r2)
>

Ω

Λ
χ1, (63)

there exists a unique solution νna ∈
(
−τna,−Ω

Λ
χ1

)
of

∑L
l=1 [Φl (ν)]+ = λeq

1 (ν) and a corresponding channel
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index 1 ≤ L∗ ≤ L such that Φl (ν
na) > 0, ∀l ≤ L∗,

and Φl (ν
na) = 0, ∀l > L∗. If τna ≤ Ω

Λ
χ1, [Φl (ν)]+ =

λeq
1 (ν) = 0, ∀l.

Then, we can obtain a unique pna
2 = [pna

2 (νna)]+ from
(61). Substituting νna and pna

2 into (58), we can obtain
a unique

(−→
sna, pna

1

)
. Therefore, we have the following

result.

Proposition 5. With νna and L∗ from Lemma 5, there
exists a unique Nash Equilibrium in a noncooperative
duopoly market as follows

pna
2 = [pna

2 (νna)]+ from (61), (64)

sna
l =

Φl (ν
na)

λeq
1

(
νna
) , ∀l ≤ L∗ and sna

l = 0, ∀l > L∗, (65)

pna
1 = [p1 (νna; pna

2 )]+ from (54). (66)

D. Duopoly: Cooperative Operators

In this subsection, we study the cooperative case
where both shared-use and exclusive-use operators
jointly maximize the social revenue based on a sharing
contract agreement.

1) Social Revenue Maximization: Based on the
knowledge of SUs’ equilibrium in the duopoly coexis-
tence case, the social revenue can be defined as the total
revenue π (~s, p1, p2) := λeq

1 p1+λeq
2 p2 that both operators

can achieve with a given setting ~s, p1 and p2. Therefore,
the social revenue optimization can be formulated as
follows

maximize
~s, p1, p2

λeq
1 p1 + λeq

2 p2

subject to λeq
1 = Λ− α̃ (λeq

1

)
,

λeq
2 = α̃

(
λeq

1

)− α2,
∑L

l=1
sl = 1,

0 ≤ sl ≤ 1, ∀l.

(67)

Problem (67) is a non-convex problem, which is difficult
to solve efficiently. Fortunately, we can split it into
separate subproblems which can be solved efficiently as
follows.

2) Separate Subproblems: The first constraint of (67),
which can be expressed according to (47), is eliminated
by substituting (47) into p1 of the objective function. The
second constraint can also be eliminated by substituting
it into λeq

2 of the objective function. When a new variable
λeq

1,l = slλ
eq
1 is further introduced, the original problem

(67) can decomposed into two separate optimization

problems. The first problem is

maximize
λeq
1 ,
−−→
λeq
1,l

(
Ω

Λ
X + r1 − r2

)
λeq

1 −
(r1 − r2)

Λ

(
λeq

1

)2

− Ω

Λ

∑L

l=1
λeq

1,l T l
(
λeq

1,l

)

subject to
∑L

l=1
λeq

1,l = λeq
1 ,

λeq
1,l ≥ 0, ∀l,

(68)
and the second problem is

maximize
p2≥0

Λr2 − ΩX

r2
p2 −

Λ

r2
p2

2. (69)

Problem (69) is a single-variable quadratic optimization,
which is easy to solve. Problem (68) has the same convex
structure as problem (17), which can be solved similarly.
Denoting a given dual variable of this problem by ξ, we
have the following result due to the first-order condition

λeq
1 (ξ) =

Λξ +XΩ + Λ(r1 − r2)

2(r1 − r2)
, (70)

λeq
1,l (ξ) = [Φl (ξ)]

+ , ∀l. (71)

We have the following result, which can be proved
similarly as Lemma 3.

Lemma 6. If

τ co :=
Ω

Λ
X + r1 − r2 >

Ω

Λ
χ1, (72)

there exists a unique solution ξ∗ ∈
(
−τ co,−Ω

Λ
χ1

)
of

∑L
l=1 [Φl (ξ)]

+ = λeq
1 (ξ) and a corresponding channel

index 1 ≤ L∗ ≤ L such that Φl (ξ
∗) > 0, ∀l ≤ L∗,

and Φl (ξ
∗) = 0, ∀l > L∗. If τ co ≤ Ω

Λ
χ1, [Φl (ξ)]

+ =
λeq

1 (ξ) = 0, ∀l.
3) Optimal Solutions: It is easy to obtain the optimal

solution of (69), denoted by pco
2 , by the first-order

condition. The optimal solution of (68) can also be
obtained similarly as that of (17) through ξ∗ in Lemma 6.
By substituting these optimal solutions of (68) and (69)
into (47), we obtain the O1’s optimal price, denoted by
pco

1 . Hence, we have the following result.

Proposition 6. With ξ∗ and L∗ from Lemma 6, there
exists a unique optimal solution of the social revenue
maximizing (67), denoted by

(−→
sco, pco

1 ; pco
2

)
, in the coop-

eration duopoly market as follows

pco
2 =

[
r2

2
− Ω

Λ

X

2

]+

, (73)

sco
l =

Φl (ξ
∗)

λeq
1 (ξ∗)

, ∀l ≤ L∗ and sco
l = 0, ∀l > L∗, (74)

pco
1 = [p1 (ξ∗; pco

2 )]+ from (54). (75)
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4) Sharing Contract: After jointly achieving the op-
timal social revenue value πco := π

(−→
sco, pco

1 , p
co
2

)
, two

operators will decide the fraction of πco that each of them
will receive based on a sharing contract γ. Suppose that
O1 receives its revenue πco

1 = γπco, then O2 receives
its share πco

2 = (1 − γ)πco. The problem becomes how
to find a value γ∗ that satisfies both operators. Based on
the Nash bargaining theory [34], a proper γ∗ can be a
solution of the following optimization problem

maximize
γ∈[0,1]

(
γπco − πna

1

)w1
(
(1− γ)πco − πna

2

)w2

subject to γπco ≥ πna
1 ,

(1− γ)πco ≥ πna
2 ,

(76)
where w1 and w2 are weight values representing the
bargaining power of O1 and O2, respectively, and
(πna

1 , π
na
2 ), the revenues of O1 and O2 at the Nash

equilibrium, is a disagreement point. The first and second
constraints capture the cooperation incentive in that
cooperative sharing revenues must be at least equal to
the revenues obtained in the noncooperative scenario.
Denoting the set of all possible revenues that two op-
erators can achieve by S, we have

S = {(πco
1 , π

co
2 ) | πco

1 + πco
2 = πco, πco

1 ≥ 0, πco
2 ≥ 0},

(77)

which is a convex set. In addition, the feasibility of
problem (76) guarantees a following unique solution.

Proposition 7. Problem (76) has a unique optimal
solution such that (a)

1) if πco = πna
1 + πna

2 , then γ∗ = πna
1

πco ,
2) if πco > πna

1 + πna
2 , then

γ∗ =
πna

1

πco
+

w1

w1 + w2

πco − (πna
1 + πna

2

)

πco
. (78)

E. Duopoly: Algorithms

The optimal solutions provided by Propositions 5
and 6 are based on the assumption

(
λeq

1,k, λ
eq
2,k

)
> 0,

∀k ∈ K, which is not always true. Therefore, similar
to the monopoly case, we propose Algorithm 2 for the
duopoly market to search for the largest class K∗ ≤ K
that can be supportable by the operators such that the
optimal solutions in Propositions 5 and 6 correspond to(
λeq

1,k, λ
eq
2,k

)
> 0, ∀k ≤ K∗.

Proposition 8. If

r1 − θ1χ1 > r2 − θ1X (79)

and
r2

r1
> max

{
X

χ1 − 1/2θ1
,
X
χ1

}
, (80)

Algorithm 2 Optimal Pricing and Load-Balancing in the
Duopoly Market

1: Operators collect χl, χ2
l , ∀l and Λk, θk, ∀k

2: i← arg maxk∈K
{
r1 − r2 >

Ω(k)
Λ(k) (χ1 −X)

}

3: Update
−→
sco(i), pco

1 (i) and pco
2 (i) by Prop. 6 with

Λ(i), Ω(i)

4: while pco
2 (i) ≤ βlo

i

(−→
sco(i), pco

1 (i)
)

do
5: i← i− 1
6: repeat step 3
7: end while
8: K∗ ← i, pco

1 ← pco
1 (K∗),

−→
sco ← −→sco(K∗) and pco

2 ←
pco

2 (K∗)
9: Operators broadcasts pco

1 ,
∑L
l=1 s

co
l T l

(
sco
l λ

eq
1 (ξ∗)

)
,

pco
2 and all SUs join the network by Definition 2.

10: % Steps 1 to 9 are applied to cooperative duopoly;
for the noncooperative duopoly, all of steps are
the same except replacing every pco

1 ,
−→
sco, ξ∗, pco

2 by
pna

1 ,
−→
sna, ν∗, pna

2 and Prop. 6 by Prop. 5 in line 3. %

Algorithm 2 always returns a class K∗ ≥ 1 such
that

(
λeq

1,k, λ
eq
2,k

)
1≤k≤K∗ > 0 for both cooperation and

noncooperation.

Remark 2. It is clear that if (79) is violated, no SUs has
any incentive to join O1. Therefore, while condition (79)
says that r1 must be larger than r2 an amount at least
θ1(χ1 −X) for O1 to have the market share instead of
being eliminated by O2, (80) provides an upper bound
on r1 to sufficiently guarantee for both noncooperative
and cooperative duopoly coexistence.

We express the intuition of Algorithm 2 in the coop-
erative case since the other case can follow the same
lines of argument. In line 2, with condition (79) we
can always find such a class i ≥ 1. According to
Lemma 4, condition (72) is always satisfied with Ω(j)

Λ(j) ,
∀j ≤ i. Thus, by Proposition 6 we can always obtain−→
sco(j), pco

1 (j) and pco
2 (j), ∀j ≤ i in line 3. Based on the

observation that pco
2 (i) is decreasing by Lemma 4 and

Proposition 6, the algorithm keeps lowering this largest
class until, if it is possible, there is a class K∗ satisfying
condition pco

2 (K∗) > βlo
K∗
(−→
sco(K∗), pco

1 (K∗)
)

(lines 3 to
8 in Algorithm 2), which guarantees

(
λeq

1,k, λ
eq
2,k

)
> 0,

∀k ≤ K∗ by Proposition 8. Similar to Algorithm 1,
Algorithm 2 has the complexity O(K).

V. NUMERICAL RESULTS

In this section, we apply the analytical results to
numerically illustrate the operators’ optimal solutions by
Algorithms 1 and 2 corresponding to the monopoly and
duopoly scenarios, respectively.
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Fig. 4. (a) The optimal load balancing and pricing solutions of the monopolist in the setting ExpErl (left column plots) and UniExp (right
column plots), (b) The monopoly revenue and the aggregate SUs’ utilities with the setting ExpErl (left plot) and UniExp (right plot).

First, we consider 15 classes of SUs, represented
by (θ1, θ2, . . . , θ15) = (0.2, 0.4, . . . 3). Furthermore, Λk
follows a uniform distribution on [0, 3] for k = 1, . . . , 15.

Second, we consider a shared-use operator with five
channels. In the first setting termed ExpErl, X has
the exponential distribution with fX(x) = µXe

−µXx,
whereas Y and Z have the Erlang distributions with
fYl

(y) = µ2
onye

−µony and fZl
(z) = µ2

offze
−µoffz , ∀l,

respectively. We set µX to 1 (i.e. X = 1) and the PU
activities from channel 1 to 5 are set to (µon, µoff) =
(1.5, 0.5), (1.2, 0.8), (1.0, 1.0), (0.8, 1.2) and (0.5, 1.5).
In the second setting termed UniExp, X is uniformly
distributed on [0.1, 1.9] (i.e. X = 1), whereas Y and Z
have exponential distributions with fYl

(y) = µone
−µony

and fZl
(z) = µoffe

−µoffz , ∀l, respectively, where the PU
activities from channel 1 to 5 are (µon, µoff) = (1.4, 0.6),
(1.3, 0.7), (1.0, 1.0), (0.7, 1.3) and (0.4, 1.6). The PU
channels in both settings model the increasing PU oc-
cupancy, i.e., light to heavy PU traffic. From (3) and
(4), χl and χ2

l of ExpErl are (1.25, 1.54, 2.0, 2.85, 5.0)
and (3.52, 5.73, 10.33, 22.37, 72.38), respectively; and
those of UniExp are (1.33, 1.66, 2.0, 2.5, 4.0) and (2.7,
4.64, 7.08, 11.69, 32.32), respectively, for l = 1, . . . , 5.
We can see that for all channels, the second moments of
case ExpErl are greater than those of UniExp.

Finally, for the exclusive-use operator, we simply set
X = 1 to illustrate the same bandwidth for all channels
of O1 and O2.

A. Monopoly

Fig. 4a shows a sample of the optimal load balancing
and pricing solutions of the monopolist in both settings
ExpErl and UniExp when r is varied. We can see that
when r is small, only those channels ls with low value
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r
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∗

ExpErl
UniExp

Fig. 5. The largest class value θK∗ that can be supportable by O1

using Algorithm 1.
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Fig. 6. Numerical illustration of Lemma 3 in the setting ExpErl with
r = 2. The lines of [Φl(µ)]+ are continuous and decreasing to 0 at
−Ω

Λ
χl, l = 1, . . . , 5, respectively. The functions

∑5

1
[Φl(µ)]+ and

λeq
tot(µ) intersect at a unique µ∗ that corresponds to L∗ = 2.

χl and χ2
l are activated with sl > 0, pl > 0; and the

setting ExpErl, with greater channels’ variability (second
moments), has less activated channels than those of
UniExp (e.g. when r = 2, only channels 1 and 2 of
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Fig. 7. Duopoly performance with 15 SUs’ classes: (a) Non-cooperative revenues (πna
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2 (ξ∗) pco

2

)
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(
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1
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l
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l
λ
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Fig. 8. The largest class K∗ of Algorithm 2 with 40 SUs’ classes: (a) r1 is fixed at 50, r2 varies from 41 to 47, (b) r2 is fixed at 45, r1

varies from 48 to 54.

ExpErl and channels 1, 2 and 3 of UniExp are active).
For these activated channels, it is clear that the channel
with low value χl and χ2

l will have high value sl. When r
increases, the number of activated channels and the opti-
mal prices also increase in both settings. Furthermore, we
observe that the load balancing solution converges to a
fixed distribution when r keeps increasing. In Fig. 4b, we
further examine the relationship between the monopoly
revenue, πmo

1 , and the corresponding aggregate utility of
SUs, Umo

1 :=
∑
k

∑
l

∫ 1
αk,l(λ

eq
l ) Uk,l(α)dα, via the operator’s

quality r. When r increases, we observe that while
πmo

1 increases with a slightly increasing slope, Umo
1

first increases with a sharply increasing slope up to a
critical value of r = 26, then changes to a linearly
increasing state. It can be explained that: First, not
only K∗ increases (i.e. more classes are supported),
but also the utility of each class k ≤ K∗ increases
when r is increased to the critical value 26, where

the maximum number of classes K = 15 is achieved.
Second, when r is increased past this critical value, while
the majority of the utilities of low classes (i.e. small k)
continue increasing, some higher classes start to decrease
their utilities because the increase of value r does not
compensate for their high cost θkT l (λl(sl)) + p∗l due to
high values of θk and p∗l .

Fig. 5 shows the largest class θK∗ that can be support-
able using Algorithm 1. In both settings, we can see that
the higher value r, the higher class-K∗ SUs that can be
admitted into the monopoly network. We also observe
that the UniExp setting with lower channels’ variability
can support higher class SUs than ExpErl does.

Fig. 6 illustrates Lemma 3 in the setting ExpErl when
r = 2. With the unique value µ∗, we can see that L∗ = 2
where [Φl (µ)]+ = 0 for l = 3, 4, 5 and [Φl (µ)]+ > 0
for l = 1, 2, which leads to sl > 0, l = 1, 2, in the top
left graph of Fig. 4a with r = 2.
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TABLE I
MONOPOLY AND DUOPOLY REVENUE COMPARISON

(r1, r2) (πmo
1 , πmo

2 ) (πna
1 , π

na
2 ) (πco

1 , π
co
2 )

setting i)
(πco

1 , π
co
2 )

setting ii)
(30, 28) (31, 303) (1, 31) (5, 126) (49, 82)

(31, 29) (32, 315) (1, 32) (5, 132) (52, 85)

(32, 30) (34, 326) (1, 32) (5, 137) (54, 88)

(33, 31) (35, 337) (1, 32) (5, 142) (56, 91)

(34, 32) (37, 349) (1, 33) (6, 147) (59, 93)

(35, 33) (38, 349) (2, 44) (8, 159) (60, 106)

B. Duopoly

The duopoly performance is presented in Fig. 7, where
r1 is fixed at 50 and r2 is varied from 41 to 47 where
the starting points are marked by black squares. We note
that these values of r1 and r2 satisfy (79) and (80).
Fig. 7a shows the revenue comparison between non-
cooperation and cooperation. In the case of cooperation,
we consider three different weight settings (w1, w2) to
characterize the effect of sharing contract: setting (i)
corresponds to the revenues without sharing contract,
setting (ii) relates to the intrinsic quality per cost and
setting (iii) can be considered as price per QoS. We can
see that the cooperation always gains more revenues for
both operators than the non-cooperation; especially when
r2 is large, the gain is significant. When r2 increases, the
Nash equilibrium of both operator’s revenues decrease,
since they competitively reduce their low prices to attract
more SUs in Fig. 7b. Fig. 7b also shows that while O2

increases its price,O1 decreases its price to cooperatively
maximize their social revenue. In this case, Fig. 7a shows
that the social revenue of setting (i) keeps decreasing
O1’s revenue and increasing O2’s revenue, which is
clearly not favored by O1; whereas settings (ii) and (iii)
drive their social revenue in a similar direction that can
satisfy both operators. We also observe that all classes
are supported by both operators with all values r2 (i.e.
θK∗ = 3). We continue to compare the revenue gain
between monopoly and duopoly in Table I, where we
increase the pair of (r1, r2) such that their difference is
a fixed value and satisfies Proposition 8. Since sharing
the market means losing revenue, we clearly see that
the sum of monopoly revenues is larger than that of the
duopoly in all cases.

To illustrate the effect of the largest class K∗ ad-
mission, we change the setting to 40 classes of SUs
with (θ1, θ2, . . . , θ40) = (0.5, 1, . . . 20) and Λk follows a
uniform distribution on [0, 20] for k = 1, . . . , 40. With
this new setting, Fig. 8 shows the largest class value θK∗
that can be supportable by O1 and O2 using Algorithm

2. At line 2 of Algorithm 2, we see that θK∗ depends
on r1 − r2, given fixed channels’ distributions. Hence,
θK∗ decreases when r1−r2 decreases in Fig. 8a and θK∗
increases when r1−r2 increases in Fig. 8b. Furthermore,
the noncooperation always maintains a higher index K∗

than that of the cooperation case since noncooperative
operators try to attract as many SUs’ classes as possible
leading to their price reduction, whereas the cooperative
ones conservatively reduce the largest supportable class
K∗ to increase their prices to maximize their total
revenue.

VI. CONCLUSION

Traditionally, pricing and load balancing are designed
separately for dynamic spectrum access control. We
perform a joint optimization in two network markets:
monopoly and duopoly. In both scenarios, we first ad-
dress the heterogeneous multi-class SUs’ equilibrium
behavior as a constraint in the operators’ revenue op-
timization problem that can be decomposed into smaller
problems revealing their convex structures. Based on
that, we next provide the unique optimal pricing and
load balancing solutions not only for the monopolist’s
revenue but also for the duopoly’s Nash equilibrium
and social revenues. We finally propose two algorithms
to find the largest supportable SUs’ class in both sce-
narios. Numerical results are provided to validate our
analysis and show that by cooperation, both operators
can enhance their revenues significantly when compared
with noncooperation. Our model can be extended to the
cases where both operators are shared-use or both are
exclusive. However, for an oligopoly case with any finite
operators, the model becomes complicated and needs a
different approach for tractable analysis.
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