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Abstract—We study the demand response (DR) of geo-
distributed data centers (DCs) using smart grid’s pricing signals
set by local electric utilities. The geo-distributed DCs are suitable
candidates for the DR programs due to their huge energy
consumption and flexibility to distribute their energy demand
across time and location, whereas the price signal is well-known
for DR programs to reduce the peak-to-average load ratio. There
are two dependencies that make the pricing design difficult: i)
dependency among utilities, and ii) dependency between DCs and
their local utilities. Our proposed pricing scheme is constructed
based on a two-stage Stackelberg game in which each utility sets
a real-time price to maximize its own profit in Stage I; and based
on these prices, the DCs’ service provider minimizes its cost via
workload shifting and dynamic server allocation in Stage II. For
the first dependency, we show that there exists a unique Nash
equilibrium. For the second dependency, we propose an iterative
and distributed algorithm that can converge to this equilibrium,
where the “right prices” are set for the “right demands”. We also
verify our proposal by trace-based simulations and results show
that our pricing scheme significantly outperforms other baseline
schemes in terms of flattening the power demand over time and
space.

Index Terms—Demand response, Data centers, Smart grids,
Stackelberg games, Nash equilibrium.

I. INTRODUCTION

Data centers (DCs) are well-known as large-scale consumers
of electricity (e.g. DCs consumed 1.5% of the worldwide
electricity supply in 2011 and this fraction is expected to grow
to 8% by 2020 [1]). A recent study shows that many DC
operators paid more than $10M [2] on their annual electricity
bills, which continues to rise with the flourishing of cloud-
computing services. Therefore, it is necessary for DC operators
to both cut costs and increase performances. Recent works
have shown that DC operators can save more than 5%− 45%
[3] operation cost by leveraging time and location diversities
of electricity market prices to optimize geo-distributed DCs.
However, most of the existing research is based on one impor-
tant assumption: the electricity price applying to DCs does not
change with demand. This assumption may not be true since
an individual DC with enormous energy consumption (e.g.,
Facebook’s DC in Crook County, Oregon can contributed up
to 50% of the total load of its distribution grid [4]) will impact
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to the supply-demand balance of its local utility, which in turn
can alter the utility’s price as shown in recent studies [5]–[7].
Furthermore, the power grid can be negatively affected due to
this assumption. For example, blackouts might happen due to
overloads in these areas where the DCs operator shifts all of
its energy demand to a local utility with a low price and a
high enough background load.

To make the power grid more reliable and robust, tremen-
dous research and industry efforts have focused on building
the next-generation power grids, known as smart grids. Due
to its efficiency and potential, many studies consider how
DC operators can run their geo-distributed DCs on smart
grids that support two-way information exchange between
utilities and customers [5], [8], [21]. An important feature of
smart grids is demand response (DR). DR programs seek to
provide incentives to induce dynamic demand management
of customers’ electricity load in response to power supply
conditions. For example, just before the peak load hours, a
utility can send the warning signal to customers’ smart meters
which will automatically schedule their demands to reduce the
power consumption. Due to their huge and rapidly increasing
energy consumption, DCs should be significantly encouraged
to participate in the DR programs. Furthermore, with the recent
trend in dynamic server capacity provision and flexibility of
workload shifting, geo-distributed DCs have a great potential
to easily adapt the DR programs. One of the DR programs
is using real-time pricing schemes to reduce the peak-to-
average (PAR) load ratio by encouraging customers to shift
their energy demand away from peak hours. The challenge
of an effective pricing scheme is how to charge the customers
with a right price not only at the right time and right place but
also on the right amount of customers’ demand. A real-time
pricing scheme is considered effective if it can mitigate the
large fluctuation of energy consumption between peak and off-
peak hours to increase power grid’s reliability and robustness.

In this paper, we consider the problem of using real-
time pricing of utilities to enable the geo-distributed DCs’
participation into the DR program. In this program, while
geo-distributed DCs employ workload shifting and dynamic
server provisioning in response to the price signal, the role
of local utilities is how to set the real-time prices to flatten
the customers’ demand load. It can be observed that there
is an interaction between geo-distributed DCs and their local
utilities; and it is the first challenge of this DR problem that
we call vertical dependency. Specifically, when participating
in the DR program, a DCs’ operator will distribute its energy
demand geographically based on the electric prices adjusted



IEEE TRANSACTIONS ON SMART GRIDS 2

intelligently by the local utilities. However, the utilities set
their prices based on the total demand including the DCs’
demand, which is only known when the price is available.
We clearly see that this dependency makes it difficult for
both DCs and utilities to make their decisions. The second
important challenge, which is less obvious, is an interaction
among local utilities feeding power to the geo-distributed DCs;
and we call it horizontal dependency. Specifically, the DCs’
decisions on workload shifting and server allocation depend
on the electric prices set by local utilities; therefore, if any
sub-set of the local utilities change their prices, it can lead
to the DCs’ decision changing. Since the utilities are non-
cooperative (i.e., no information exchange) in practice, how
to design a pricing mechanism that can enable an equilibrium
price setting profile is the bottleneck of this DR program.

To tackle the above discussed challenges, our contributions
can be summarized as follows
• We transform the functional space of the geo-distributed

DCs’ DR program into a mathematical space of a for-
mulated two-stage Stackelberg game. In this game, each
utility will set a real-time price to maximize its own profit
in Stage I; and given these prices, the DCs’ operator
will minimize its cost via workload shifting and dynamic
server allocation in Stage II. We also utilize the backward
induction method to find the Stackelberg equilibria of this
two-stage game.

• Based on the Stackelberg equilibria, our proposed scheme
can deal with the inherent challenges of this DR as
follows: First, the horizontal dependency between utilities
are characterized as a strategic game in Stage I, and we
show that there exists a Nash equilibrium in this game.
Second, we propose an iterative and distributed algorithm
to achieve the Stackelberg equilibrium. In this algorithm,
the DCs and utilities exchange their information (i.e.
DCs’ demand and utilities’ prices) iteratively until the
algorithm converges. We also examine the algorithm’s
convergence where the “right prices” are set for the “right
demands” as a solution for the vertical dependency issue.

• Finally, we perform a real-world trace-based simulation to
solidify the analysis. The results show that our proposed
pricing scheme can flatten the workload not only over
time but also over space to improve the power grid’s
reliability and robustness.

The rest of this paper is organized as follows. Section II is
about related work. Section III presents the system model
and the two-stage Stackelberg game. We analyze this game
and propose a distributed algorithm in Section IV. Section V
provides the trace-based simulation results and Section VI
concludes our work.

II. RELATED WORK

DR is indentified as one of high-prioritized areas for future
smart grids [9]–[11] with its potential to reduce up to 20%
of the total peak electricity demand of US [12]. Most DR
proposals, which try to incentivize customers to manage
their demand dynamically in response to the power supply
conditions, mostly targeted to residential customers [13]–
[16]. On the other hand, most of the existing research on

DCs, which can be classified as medium or large industrial
customers, mainly focus on their cost minimization that takes
the electricity price for granted [3], [17], [18], which does
not follow any DR programs. However, due to the important
role of DCs in DR programs, DRs of DCs recently receive
significant attention [4], [7], [8], [19]–[22].

For those work considering DR of geo-distributed DCs,
based on the interactions between DCs and utilities, we simply
divide them into two categories.

1) One-way interaction: One of the most popular DR
programs of DCs is Coincident Peak Pricing (CPP), which
is studied in [20]. CPP charges very high prices for power
usage during the coincident peak hour at which the most
electric demands is requested to the utility. By predicting the
upcoming potential peak hours, the utilities send a warning
signal (i.e., not a price) to help customers schedule their power
consumption. However, current DCs do not respond actively
to the warning signals due to the uncertainty of these warnings
[20], which motivates researchers to devise more effective
DR approaches. The authors in [7] use a “prediction-based”
method where the customers (DCs) respond to the prices
which are chosen based on a supply function. This supply
function can be modeled using some data fitting methods based
on history. Hence, in this work only customers respond to
a predicted price while there is no action from the power
suppliers to set the prices corresponding to the demand.

2) Two-way interaction: There are three recent papers [5],
[8], [21] in this category. The first two papers, which are highly
related to our work, consider dynamic pricing mechanisms
with the coupling between utilities and DCs, whereas the last
one proposed that DCs can participate in the spot market via
a broker, which is a significant departure from our model.
Moreover, the system model of [8] assumes that all utilities
cooperate to solve a social optimization problem, which is
not relevant to current practice since there is no information
exchange between utilities in reality. On the other hand, the
pricing scheme of [21] is based on a heuristic approach,
which cannot maximize the utilities’ profit as well as minimize
their cost. Our work falls into this category of two-way
interaction, yet is different from others in terms of its two-stage
game-theoretic approach to tackle the vertical and horizontal
coupling issues, which are not addressed in the literature,
between geo-distributed DCs and local utilities.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider one-period demand response as in [17], [23],
where its duration, which is controlled by a utility/load serving
entity, matches an interval at which the DCs’ decisions and
utilities’ real-time prices can be updated (such as 15 minutes
or 1 hour). Let I = {1, . . . , I} denote the set of sites
with different electrical utilities’ service regions where DCs
are located. Such geo-distributed DCs are very common in
practice, e.g., Google, Amazon, etc. Each DC i is powered
by a local utility company and have Si homogeneous servers.
A DC with heterogeneous types of servers can be viewed as
multiple virtual DCs each having homogeneous servers. For
the ease of presentation, Table I lists key notations of this
paper.
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Fig. 1. The functional space of the geo-distributed DCs’ demand response
on the left and its transformed mathematical space as a two-stage Stackelberg
game on the right.

TABLE I
SUMMARY OF NOTATIONS

Notation Description
I Number of tenants

Λ Total workload at front-end server

λi Workload at DC i

di Transmission delay from front-end server to DC i

γ Weight of utility cost

edi Interactive-job energy

ebi Batch-job energy

ei Total energy of DC i

ω Weight factor of migration cost

pi Price at DC i

µi Service rate of DC i

si Number of active servers

Bi Background energy demand of utility i

αi, βi Parameters of background demand Bi model

Di Maximum average delay of DC i

Ci Capacity of utility i

We incorporate the role of utility into the DR programs
of DCs to regulate the power demand at each local site
for load balancing the power grid. We illustrate a functional
space and a mathematical space of this DR program in
Fig. 1. In the functional space, we leverage the idea of
using the advanced two-way communication of smart grid
to facilitate the information exchange between utilities and
DCs at each local site via smart meters. While utilities set
prices to incentivize DCs to flatten the demand over time and
locations to increase the power grid’s reliability, as the price-
takers the DCs will minimize their costs. In the mathematical
space, we observe that there exists a special mutual interaction
between DCs and utilities where utilities set prices based on
the total demand, and DCs minimize their costs based on the
prices. Therefore, we transform this DCs’ DR program into
a leader-follower game that can be studied using a two-stage
Stackelberg game. Specifically, the utilities are the leaders that
set the prices to maximize their profits in Stage I and DCs will
make their decisions on workload shifting and dynamic server
provisioning to minimize their costs in Stage II. We present
this two-stage game formulation in the reverse sequence,

starting with Stage-II optimization problem.

A. DCs’ Cost Minimization in Stage II

We first describe the workload model of a typical DC. We
then elaborate the DCs’ cost focusing on the energy cost and
delay cost model. Finally, we formulate the Stage-II DC’s cost
minimization.

1) Workload Model: Even though DCs can support a wide
range of workloads, we generally classify them into two
typical types of workload: interactive (non-interruptive) jobs
and batch (interruptive) jobs. While the former is delay-
sensitive (e.g. computing search, online game, etc.), the later
is delay-tolerant (e.g. backup tasks, MapReduce, etc.). We
assume that each DC processes its batch jobs locally (i.e. batch
jobs cannot be re-directed to other DCs for load balancing)
since without stringent delay constraint, they are flexible to
be scheduled across a large time window at a local site, like
[18]. For interactive jobs, we denote the total arrival rate to
the DCs’ front-end server, (i.e. all DCs are managed by a
DCs service provider (DCs provider)) by Λ and this front-end
server is responsible for splitting the total incoming workload
Λ into separate workloads of geo-dispersed DCs, denoted by
{λi}i∈I . Even though we only consider workload shifting,
the other control knobs for DR such as power load reduction
(e.g., scaling down CPU frequencies and/or turning off unused
servers) can also be integrated into our framework.

2) DC’s Cost and SLA Model: We assume that the DCs
provider tries not only to minimize its energy cost and migra-
tion cost but also to guarantee the Service Level Agreement
(SLA) requirements for the interactive jobs.

Energy Cost: Since batch jobs are flexible to schedule in
time domain, batch jobs processing is considered to consume
an amount of energy ebi of each DC i with their dedicated
servers. On the other hand, the energy consumption of inter-
active jobs at DC i is [2]

edi = si
(
Pidle + (Ppeak − Pidle)Ui + (η − 1)Ppeak

)
(1)

where si is the number of active servers, µi is the service
rate of a server, Ppeak and Pidle are the server’s peak and idle
power, respectively, Ui = λi

siµi
is the average server utilization,

and η is the power usage effectiveness (PUE) measuring the
energy efficiency of the DC. We can rewrite edi as follows

edi = aiλi + bisi, ∀i ∈ I, (2)

where ai = (Ppeak−Pidle)/µi and bi = Pidle+(η−1)Ppeak.
Therefore, denoting the total energy by

ei = edi + ebi , (3)

and given a price pi, the energy cost of DC i is eipi.
Migration Cost: Since migrating the workload from front-

end server to geo-distributed DCs can be very costly (e.g.
migrating virtual machines or video content requests over the
Internet could be expensive due to reserving bandwidth from
an ISP), we model the migration cost to DC i as ωdici(λi),
where di is the transmission delay from the front-end server
to DC i, ω is a weight factor and ci(λi) is a function which
is assumed to be strictly increasing and convex. Since di is
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proportional to the distance, it is assumed to be a constant and
we see that migrating more requests from the front-end server
to a more distant DC is more costly. For analysis tractability,
we choose a quadratic function ci(λi) = λ2i since it is
widely used in many fields such as control, signal processing,
communication networks, etc. to model a cost function [24].

SLA Constraint: We assume that each delay-sensitive
request imposes a maximum delay Di that the DCs provider
has to guarantee when shifting this request to DC i. Therefore,
the SLA constraint in terms of delay guarantee can be modeled
as follows

1

siµi − λi
+ di ≤ Di,∀i, (4)

where 1/(siµi − λi) is the average delay time of a request
processed in DC i with arrival rate λi and service rate siµi by
queueing theory, which has been widely used as an analytic
vehicle to provide a reasonable approximation for the actual
service process [18], [25].

3) Problem Formulation: Our model focuses on two key
controlling “knobs” of DCs’ cost minimization: the workload
shifting to DC λi and the number of active servers provisioned
si at site i, ∀i. Then, the Stage-II DC cost minimization is
given by

DC : minimize
I∑
i=1

eipi + ωdiλ
2
i (5)

subject to constraints (2), (3), (4),
I∑
i=1

λi = Λ, (6)

0 ≤ si ≤ Si, ∀i, (7)
0 ≤ λi ≤ siµi, ∀i, (8)

variables si, λi, ∀i. (9)

While constraints (2), (3) and (4) are the definitions of
the objective function and the SLA contraint, the remaining
constraints are straight-forward. In (6), all of the incoming
workload must be served by some DCs. Moreover, (7) limits
the number of active servers and (8) means that the total
workload assigned to a DC must be less than its capacity. With
thousands of servers in a DC, we can further relax the integer
variables si as continuous variables so that this problem is
tractable [17].

B. Non-Cooperative Pricing Game in Stage I

In this stage, we first present the market structure. We
next describe the utility’s revenue and cost models and finally
formulate the non-cooperative pricing game.

1) DR Retail Price: Traditionally utilities involve many
complex electricity markets. As buyers, utilities can participate
in a wholesale market (day-head, real-time balancing) to
buy electricity from the generating companies with wholesale
prices. As sellers, utilities make profit by selling retail to
their customers with proper retail rates [5]. Since conventional
customers (i.e. no DR) have inelastic demand with predictable
patterns, utilities can predict and buy energy from wholesale

1
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UtilityUtility

Wholesale Pricing

Conventional
Retail Price

for non-DR customers 

Fig. 2. Besides conventional wholesale and retail pricing, the utilities’ DR
real-time pricing is proposed for geo-distributed DCs and other DR-enabled
customers.

market, then resell it at the conventional retail rates. However,
DCs with workload shifting represent a new type of elastic-
demand customers, which makes utilities difficult to predict
their demands, impacting the grid’s stability. Therefore, we
propose a new DR retail pricing scheme for utilities to serve
the unpredicted and elastic customers, e.g. not just load-
shifting DCs but also for all DR-enabled customers. The basic
idea of this scheme is that utilities and these DR-enabled cus-
tomers can coordinate via smart-grid infrastructure to match
supply with demand. Fig. 2 illustrates that utilities can apply
the conventional and DR retail prices to their corresponding
customers, which are complementary to each other so that the
proposed scheme will not affect to the conventional scheme,
similar to [8], [16], [26]. Since conventional markets and
customers are orthogonal to our model, henceforth we only
consider utility’s profit model and the proposed real-time
pricing scheme for DR-enable customers.

2) Utility’s Revenue and Cost Model: We see that the
optimal energy consumption of DCs that can be obtained
from solving DC depends on all utilities’ prices. Denote
the corresponding optimal power demand by ei(p), where
p := {pi}i∈I . We further assume that due to the grid
regulations at each region, the lower and upper bound of
the real-time price should be imposed and denoted by pli
and pui , ∀i, t, respectively. Furthermore, besides the power
demand of DCs, each utility has its own background load
(e.g. residential/commercial/industrial demand). Since there
are considerable works focusing on the residential DR pro-
grams, we assume that the background load of utility i,
denoted by Bi(pi), also responds to the price and can be
modeled by the following function

Bi(p) =


Bli, pi ≤ pli;
αi − βipi, pli ≤ pi ≤ pui ;

Bui , pi ≥ pui ,
(10)

where Bli and Bui are the minimum of maximum background
demands of site i due to the physical constraints of consumers
(i.e. minimum and maximum power of electric devices or
vehicles). This function, which follows the linear demand
model in [27], shows an inherent response of customers to the
price: decrease the demand down to a lower-bound constraint
when the price increases, and vice versa, where βi is the
decreasing slope and αi models the physical upper-bound
demand without price. Based on the history of customer’s
usage data, utilities can estimate αi and βi using some data
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fitting methods, similar to [7]. Based on the total power
requested by DCs and background’s demands, the revenue of
utility i is given by

Ri(p) =
(
ei(p) +Bi(pi)

)
pi. (11)

On the other hand, every utility incurs a cost when it serves
the customers’ load. When the load increases, the utility’s
cost also increases since normally blackouts happen due to
overload, which is a disaster to any utility. Hence, we can
model the utility’s cost based on a widely-used electric load
index (ELI) as follows

Ci(p) = γELI := γr2iCi =

(
ei(p) +Bi(pi)

Ci

)2

Ci, (12)

where Ci is utility i capacity, γ reflects the weight of the
cost, and ri is a load ratio that measures the power load
levels. A very high ri can risk the utility’s stability. ELI is
motivated by the index measurement techniques used for load
flattening in a power grid [8], [28], [29]. We see that ELI
can weight different utilities’ load ratio ri by their capacities,
providing feeder load-balancing capability. On the other hand,
a utility with high γ shows that it is more concerned about
the effect of ELI to the reliability, while a utility with low γ
has more interest in making revenue and less concerned about
the instability’s threat.

3) Stage-I Pricing Game Formulation: In reality, the geo-
distributed utilities usually have no communication exchange
to optimize the social performance. Instead, each utility i has
its own goal to maximize its profit, which is defined as the
difference between revenue and cost as follows

ui(pi, p−i) = Ri(p)− Ci(p), (13)

where p−i denotes the price vector of other utilities except i.
This notation comes from an observation that there is a game
between utilities because the profit of each utility not only
depends on its energy price but also on the others’. Hence,
the Stage-I utility profit maximization game, denoted by UP =
(I, {pi}i∈I , {ui}i∈I), is defined as follows
• Players: the utilities in the set I;
• Strategy: pli ≤ pi ≤ pui , ∀i ∈ I;
• Payoff function: ui(pi, p−i), ∀i ∈ I.

IV. TWO-STAGE STACKELBERG GAME: EQUILIBRIA AND
ALGORITHM

In this section, we first apply the backward induction
method to solve the Stackelberg game. Then, we propose an
iterative algorithm to reach an equilibrium of this game.

A. Backward Induction Method

1) Optimal Solutions at Stage II: We realize that the
Stage-II DCs’ cost minimization can be decomposed into
independent problems. Henceforth, we only consider a specific
time period and drop the time dependence notation for ease of
presentation. In this stage, DCs cooperate with each other to
minimize the total cost by determining the workload allocation
λi and the number of active servers si at each DC i. It is easy

to see that the DCs’ cost minimization is a convex optimization
problem.

First, we observe that constraint (4) must be active because
otherwise the DCs provider can decrease its energy cost by
reducing si. Hence, we have (4) is equivalent to

si(λi) =

[
1

µi

(
λi + D̃i

−1)]Si

0

, (14)

where [.]
y
x is the projection onto the interval [x, y] and D̃i :=

Di − di. In practice, most DCs can have a sufficient number
of servers to serve all requests at the same time due to the
illusion of infinite capacity of DCs [17]. Therefore, we adopt
si(λi) = 1

µi

(
λi + D̃i

−1)
in the sequel. By substituting this

si(λi) into the objective of DC, we have an equivalent problem
DC′ as follows

DC′ : min.
λ

∑I

i=1
fi(λi) (15)

s.t.
∑I

i=1
λi = Λ, (16)

λi ≥ 0, ∀i, (17)

where

fi(λi) := ωdiλ
2
i + pi

(
ai +

bi
µi

)
λi + pi

(
eb +

biD̃i
−1

µi

)
.

It can be seen that DC′ is a strictly convex problem, which has
a unique solution. Since DCs provider likes to have λi > 0,
∀i, in order to utilize all DCs resources, we characterize the
unique solution of DC′ and a necessary condition to achieve
this solution with the optimal λ∗i > 0, ∀i, as the following
result.

Lemma 1. Given a price vector p, we have the unique
solutions of Stage-II DC problem:

λ∗i =
ν∗ − piAi

2ωdi
> 0, and s∗i =

1

µi

(
λ∗i + D̃i

−1)
,∀i,

(18)

only if

ω > ω1
th :=

(
d̂max

i
{piAi} −

∑I

i=1
piAi/di

)
/2Λ, (19)

where d̂ :=
∑I
i=1 1/di, Ai := ai + bi

µi
and ν∗ =

1
d̂

(
2ωΛ +

∑I
i=1 piAi/di

)
.

Since all parameters to calculate ω1
th are available to DC

i, we can consider condition (19) as a guideline for a DCs
provider to choose an appropriate weight factor ω to ensure
that all DCs have positive request rates.

2) Nash Equilibrium at Stage I: We continue to character-
ize the Nash equilibrium of the Stage-I game based on the
Stage-II solutions. From (13), we have

ui(pi, p−i) =
(
e∗i (p) +Bi(pi)

)
pi − γCi

(
e∗i (p) +Bi(pi)

Ci

)2

,

(20)
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where e∗i (p) = (aiλ
∗
i + bis

∗
i ) + ebi (with λ∗i and s∗i obtained

from Lemma 1) and can be presented as follows

e∗i (pi, p−i) = (21)
A2
i pi

2ωdi
(

1

d̂di
− 1) +

Ai

2ωd̂di

∑
j 6=i

Ajpj
dj

+
AiΛ

d̂di
+

bi

µiD̃i

+ ebi .

In the non-cooperative game, one of the most important
questions is whether there exists a unique Nash equilibrium.
In the case of Stage-I game, we have the following definition
of a Nash equilibrium.

Definition 1. A price vector pe := {pei}i∈I is said to be
a Nash equilibrium if no utility can improve its profit by
unilaterally deviating its price from the Nash equilibrium:

ui(p
e
i , p

e
−i) ≥ ui(pi, pe−i), pli ≤ pi ≤ pui , ∀i. (22)

Theorem 1. (Existence) There exist a Nash equilibrium of the
Stage-I UP game.

In this Stage-I game, given all other utilities’ strategies p−i,
a natural strategy of utility i is the best response strategy as
follows

BRi(p−i) = arg max
pi∈Pi

ui(pi, p−i),∀i, (23)

where Pi :=
[
pli, p

u
i

]
. In order to find the best response, we

set ∂ui(p)
∂pi

= 0. Then, the iterative best response updates can
be obtained as follows

p
(k+1)
i = BRi

(
p
(k)
−i

)
=

1/2− γNi/Ci
1− γNi/Ci

h
(
p
(k)
−i

)
(−Ni)


Pi

,∀i,

(24)

where [.]Pi
denotes the projection onto Pi, k represents the

iterations, Ni :=
A2

i

2ωdi
( 1
d̂di
− 1)− βi, and

h(p−i) :=
Ai

2ωd̂di

∑
j 6=i

Ajpj
dj

+
AiΛ

d̂di
+

bi

µiD̃i

+ ebi + αi,∀i.

(25)

When all utilities play best response strategies, a Nash
equilibrium pe is a profile that satisfies pei = BRi(pe−i), ∀i, i.e.
every utility’s strategy is its best response to others’ strategies.
However, there are two issues here: i) There is no condition
for general games such that the best responses converge to
a Nash equilibrium; ii) Since multiple Nash equilibria can
exist in the UP game, how the best response can converge
to a unique Nash equilibria. Hence, we next examine the
convergence property of the best response (24) to a unique
Nash equilibrium by using the concept contraction mapping.

We briefly introduce contraction mapping and its properties,
all of which can be found in chapter 3 of [30]. Since many
iterative algorithms have the form x(k+1) = T(x(k)), k =
0, 1, . . ., where x(k) ∈ X ⊂ Rn, the mapping T : X 7→ X is
called a contraction if there is a scalar 0 ≤ σ < 1 such that

||T(x)−T(y)|| ≤ σ||x− y||, ∀x, y ∈ X , (26)

Internet
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Figure 9: The interactions between front-end server, local DCs and utilities

The interactions between front-end server, local DCs and local utilities

Utility IUtility I

Utility 2Utility 2

Fig. 3. Detailed operations of Algorithm 1, where red arrows represent steps
3 and 5 and blue arrows correspond to step 4.

where ||.|| is some norm defined on X . Furthermore, the
mapping T is called a pseudo-contraction if T has a fixed
point x∗ ∈ X (i.e. x∗ = T(x∗)) and

||T(x)− x∗|| ≤ σ||x− x∗||, ∀x ∈ X . (27)

Both contraction and pseudo-contraction have the geometric
convergence rate property: suppose the mapping T has a fixed-
point, the sequence {x(k)} generated by x(k+1) = T(x(k))
converges to a unique fixed point x∗ geometrically satisfying

||x(k) − x∗|| ≤ σk||x(0) − x∗||, ∀k ≥ 0, (28)

with any initial value x(0) ∈ X .
Based on the above properties of contraction mapping and

Theorem 1, if we can show that the best response update
(24) is a contraction mapping, then we can guarantee its
convergence to a unique Nash equilibrium. Therefore, we
establish the following sufficient condition.

Theorem 2. (Convergence and Uniqueness) If

ω ≥ ω2
th := max

i

{
Ai
∑
j 6=iAj/dj −A2

i d̂(1− 1/(did̂))

2βid̂di

}
,

(29)

then starting from any initial point, the best response updates
(24) of the Stage-I UP game is a contraction mapping that
converges to a unique Nash equilibrium pe geometrically.

B. Distributed Algorithm

We first describe the detailed operations of the proposed
algorithm. Next, we discuss practical implementation issues
of the algorithm.

1) Proposed Algorithm’s Operations and Convergence:
We continue proposing a distributed algorithm, shown in
Algorithm 1 (Alg. 1), which can achieve the Nash equilibrium.
The detailed operations of Alg. 1 are illustrated in Fig. 3.
We assume that Alg. 1 operates at the beginning of each
pricing update period (i.e. one hour) and the algorithm runs for
many iterations (communication rounds with a parameter k)
until it converges to a price setting equilibrium. Here, based
on the total incoming workload, the front-end server of the
DCs provider first collects all prices from its local DCs and
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Algorithm 1 Demand Response of Data Center with Real-time
Pricing

1: initialize: k = 0, ε is arbitrarily small, p(0)i = pui , ∀i, and
ω satisfies (29);

2: repeat
3: Utility i broadcasts its p(k)i to all customers;
4: The front-end server collects p(k) from all DCs, up-

dates e∗i (p)
(k) as (21) and sends it back to DC i, ∀i;

5: Each DC i reports its e∗i (p)
(k) to the local utility;

6: Utility i receives the demand responses from the local
DC e∗i (p)

(k) and background users Bi(p)(k), then updates
p
(k+1)
i = BRi

(
p
(k)
−i

)
as (24);

7: until
∣∣p(k+1) − p(k)

∣∣ < ε.

calculates the optimal energy consumption as (21) (step 4).
After that, the front-end server will feedback these energy
consumption data to its local DCs, which then forwards its
own information to the local utility (step 5). Each utility solves
its own profit maximization problem (best response updates) to
find an optimal price, then broadcasts this price to its local DCs
and background customers (step 6). The process repeats until
the game converges to the unique Nash equilibrium according
to Theorem 2 (step 7). At this state the price setting is finalized
and applied to the whole considered period.

Even though Alg. 1 is presented in a scalable and syn-
chronous fashion (i.e. all local utilities update and broad-
cast their prices at the same time), asynchronous distributed
algorithm is preferred since in reality, the message-passing
among front-end server, DCs and utilities usually incurs
heterogeneous delays. Fortunately, with condition (29), Alg.
1 can also work asynchronously since (29) is derived from
establishing a contraction mapping with respect to a maximum
norm ||.||∞, which guarantees the asynchronous convergence
of the mapping sequence [30] (pp. 431).

2) Practical Issues and Implementation Discussion: We
discuss two issues here: the workload shifting assumption and
the message-passing.

In terms of the former, we assume the DCs provider deploys
a front-end server to distribute the incoming workload to DCs.
This can be done by using various practical solutions such as
incorporating the authoritative DNS servers (which is used by
Akamai) or HTTP ingress proxies (which is used by Google
and Yahoo) into the front-end servers. Furthermore, in reality
there is only a sub-set of DCs to which a workload type can be
routed to due to the availability resource constraint of each DC.
This issue can be easily addressed by incorporating additional
constraints into our model such as [32], and in practice we can
implement it by classifying the workload types at the front-end
server before routing.

In terms of the later, we assume that the two-way commu-
nication between a DC and its local utility can be enabled via
communication networks of future smart grid. Regarding to the
communications between DCs and its front-end server, a DC
reports its utility’s price by choosing one of the egress links of
its Internet Service Provider (ISP) to send its packet through
the Internet to the front-end server, and vice versa. Specifically,

the total time of one iteration consists of the transmission time
and computational time. While the transmission time from
utilities to DCs (and vice versa) is from 1 to 10 ms over
a broadband speed of 100 Mbps, it is from 50 to 100 ms
for a one-way communication between DCs and the front-
end servers over a current ISP’s path. The computational
time depends on the processing power of the front-end server
and smart meters on calculating the optimal energy (21) and
maximizing the convex profit function (21), which are both
low-complexity problems and can be in the time-scale of
microsecond [24].

V. TRACE-BASED SIMULATIONS

In this section, we conduct trace-based simulations, imple-
mented in the Python language with existing libraries includ-
ing NumPy, SciPy, and Matplotlib, to validate our analysis and
evaluate the performance of Alg. 1.

A. Setups

We consider six geo-distributed DCs powered by their local
utilites at the following ordered locations: 1. The Dalles, OR;
2. Council Bluffs, IA; 3. Mayes County, OK; 4. Lenoir, NC;
5. Berkeley County, SC and 6. Douglas County, GA. These
locations correspond to real Google’s DCs [33]. All DCs’
PUEs are set to 1.5 over time periods. The homogeneous
servers have peak power of 200 W and idle power of 100
W, and the service rate of each server is chosen uniformly
between 1.1 and 1.2. The migration weight ω is set to 1
unless otherwise stated. The delay SLA Di are distributed
uniformly between 100 and 300 ms and di is scaled by the
vector [1.9, 1.0, 1.3, 2.5, 2.8, 2.3] in which we assume that the
front-end server is placed at Colorado.

We use realistic traces for the incoming workload Λ at the
front-end server and the power demand of delay-tolerant batch
jobs eb at each DC. All of them are scaled with respective to
service rates. We use an interactive workload trace collected
from Microsoft Research (MSR) [34]. The workload can be
predicted to a fairly reasonable accuracy using, e.g., regression
techniques [3], [34]. Furthermore, we use Google trace for the
power demand of delay-tolerant batch jobs eb in recent study
[35]. The batch job power demand and workload series spans
over 30 days corresponding to a typical utility billing cycle
and each point of series is a one-hour period.

Since lacking the public information of local utilities, we
assume that all utilities have the capacities Ci uniformly in
the range of 25 and 30 MW, which is a standard measure
for a medium-size utility. While γ is set to 1 unless otherwise
stated, αi and βi parameters are chosen uniformly in the range
of [25, 30] and [0.25, 0.30], respectively.

We consider two baseline pricing schemes for comparison.
The first baseline is based on the proposed dynamic pricing
scheme of [21], which is briefly described as follows

pi(t+ 1) = δ(PDi(t)− PSi(t)) + pi(t), (30)

where PDi and PSi are the power demand and supply of
utility i. We set δ to 0.5 in all simulation scenarios. This
baseline serves as a recent related benchmark.
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TABLE II
AVERAGE OPTIMAL PRICES COMPARISONS WITH γ EFFECT

Sites
MSR

Baseline
1

Alg. 1
γ = 1

Alg. 1
γ = 4

Alg. 1
γ = 8

1 40.32 20.75 21.20 21.77

2 88.23 35.74 36.66 37.81

3 62.78 28.32 29.01 29.88

4 31.82 17.02 17.34 17.75

5 28.54 15.82 16.10 16.45

6 33.96 18.02 18.38 18.83

The second baseline is based on the Google’s contract with
their local utilities. According to the empirical study in [33],
there are six Google’s DCs at six mentioned locations, where
Google’s DCs are infered to have long-term contracts with
their local utilities as the following fixed rates (i.e. energy
charges) [32.57, 42.73, 36.41, 40.68, 44.44, 39.97] $/MWh, re-
spectively. This baseline serves as an in-reality benchmark.
We mainly use this baseline for the PAR comparisons since
i) the Google long-term contract often negotiates a monthly
electricity bill scheme that combines energy charges and

γ
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Fig. 6. Effect of γ to average DCs’ cost and utilities’ profit.

demand charges that we do not know exactly, which can then
influence the DCs’ cost and utilities’ profit, and ii) it is not
fair to compare a dynamic pricing scheme to a snapshot static
pricing scheme in terms of cost and profit.

B. Results

We first provide the sample-path optimal prices of three
schemes at six locations in Fig. 4. In all periods, we observe
that Alg. 1 can converge in less than ten iterations, where
the stopping condition ε = 10−4. Since Baseline 1 and Alg.
1 employ dynamic pricing mechanisms, we observe that the
utilities’ prices of these two schemes vary according to the
workload pattern. We also observe the effect of migration
cost to the optimal prices in this figure. Since the nearest
DCs to the front-end server are sites 2 and 3, Fig. 4 shows
that all dynamic pricing schemes set high prices at these two
sites compared with the other sites. This can be explained as
follows, due to the small migration cost at these sites which
leads to high demand, the dynamic schemes set high prices to
balance between energy cost and migration cost. Furthermore,
we observe that Alg. 1 can contribute less load to utilities than
other schemes do most of the time; for example, this can be
seen in Fig. 5 that shows the proportion of DCs’ demand over
utilities’ total demand variations in three days at two sites.
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Fig. 7. PAR with respect to MSR trace at six locations with different γ.

Furthermore, we also investigate the effect of γ to the
pricing schemes. Table II shows that if we increase γ, then
the Alg. 1’s optimal prices also increase since the higher the
weight utilities’ ELI cost factor is, the more conservative
utilities are in terms of reliability by raising the prices. Finally,
we can see that Baseline 1 always overprices Alg. 1 in all
scenarios since Baseline 1 is more aggressive than Alg. 1 in
terms of balancing the supply and demand. However, it could
lead to high demand fluctuations (i.e. high PAR) as shown in
the following results. We also observe that the average prices
of Alg. 1 are not affected by ω.

We also evaluate the effect of parameter γ to average
DCs’ cost and utilities’ profit in Fig. 6. First, we can see
that Baseline 1 with higher prices has higher DCs’ cost and
utilities’ profit than those of Alg. 1. In details, the share of
DCs’ energy cost of Alg.1 is 36.3%, 37.8%, and 38.7% when
γ = 1, 4, and 8, respectively, whereas that of Baseline 1

(without γ impact) is 44.8%. Therefore, Alg. 1 can give more
incentives to encourage the DCs to join the DR program.

Second, we can see that when γ increases, the utilities’
profit of both schemes decrease according to (20). Since the
pricing scheme of Baseline 1 is independent with γ, we can
see that γ has no effect to the DCs’ cost of this baseline.
However, we see that DCs’ cost of Alg. 1 increases when
γ increases due to the corresponding increase of the optimal
prices (c.f. (20)). With Alg. 1, we see that small γ is favorable
because it can provide low DCs’ cost and high utilities profit.
Furthermore, due to the background demand, we see that DCs’
cost including the migration cost is lower than utilities’ profit.

The final factor that we examine is the power demand PAR
at each site, which is one of the most important metrics to
measure the effectiveness of designs for smart grid since the
fluctuation of energy consumption between peak and off-peak
hours indicate power grid’s reliability and robustness. PAR is
calculated as maxt{e∗i (p(t))+Bi(pi(t))}T∑T

t=1
e∗
i
(p(t))+Bi(pi(t))

. Reducing PAR is the

important goal of any DR program designs. Therefore, we
extensively compare the PAR of three schemes with different
γ in Figs. 7a, 7b, and 7c. The most important observation is
that PAR’s performance of Alg. 1 outperforms those of other
schemes, either static or dynamic pricing, over time and space
significantly. Specifically, considering the case γ = 1, Fig. 7a
shows that for all sites 1 to 6, Alg. 1 can achieve the lowest
PAR value as expected, reducing the PAR to 32.3%, 27.0%,
28.1%, 28.0%, 25.8%, and 29.4% compared to Baseline 1, and
31.6%, 16.7%, 22.2%, 33.5%, 34.0% and 34.0% compared to
Baseline 2, respectively. We conclude that Alg. 1 can spread
out the demand not only over time but also over locations.

VI. CONCLUSION AND FUTURE WORK

We have investigated the demand response of geo-
distributed data centers with the help of emergence techniques
of smart grid. We first characterize the challenged depen-
dencies of this geo-distributed DCs’ DR program where a
utility’ decisions not only depends on that of DCs, and vice
versa, but also impacts on other utilities’ decisions. We then
formulate this DR program into a two-stage game to model
these dependencies. In this game, the role of each utility is
setting a price to maximize its profit, while the DCs minimize
its cost by workload shifting and dynamic server allocation.
We then characterize the existence and uniqueness of the
Nash equilibrium of this game, and develop an iterative and
distributed algorithm to reach this equilibrium. By using trace-
based simulations, we validate and complement our proposal
with the simulation results, which shows that our pricing
schemes based on the two-stage game can flatten the energy
demand of DCs over time and locations to increase the power
grid’s reliability and robustness.

APPENDIX A
PROOF OF THEOREM 1

Since the strategy space of each utility i is a nonempty
compact and convex subset of Euclidean space, it is sufficient
for us to show that the continuous function ui(pi, p−i) on this
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strategy space is a quasi-concave function, ∀i, such that there
exists a Nash equilibrium for Stage-I game [36].

From (21) and (10), it can be seen that e∗i (p) and Bi(pi)
are affine functions of pi. Therefore, (e∗i (p) + Bi(pi))

2 is a
convex function [24]. Furthermore, we have ∂2(Bi(pi)pi)

∂p2
i

=

−βi < 0, ∀i and ∂2(e∗i (p)pi)

∂p2
i

=
A2

i

2ωdi

(
1
d̂di
− 1
)
< 0, ∀i, since

d̂di > 1, ∀i. Hence, both e∗i (p)pi and Bi(pi)pi are concave
functions. Therefore, from (20) we see that ui(pi, p−i) is the
sum of two concave functions so that is also a concave (and
hence quasi-concave as well) function.

APPENDIX B
PROOF OF THEOREM 2

We first seek the condition such that the best response up-
date (24) is a contraction mapping. Define a Cartesian product
space P = Πi∈IPi and a vector BR(p) := (BRi(p−i))i∈I .
Since BR(p) is continuous and differentiable on by P , by the
mean value theorem, we have

‖BR(p1)−BR(p2)‖ =

∥∥∥∥∂BR(p)

∂p

∥∥∥∥ ‖p1 − p2‖ , (31)

∀p1, p2 ∈ P and p is on the segment connecting p1 and p2.
Furthermore, the Jacobian ∂BR(p)

∂p is as follows

∂BRi (p−i)

∂pj
=

{
0, ∀j = i;

1/2−γNi/Ci

(−Ni)(1−γNi/Ci)
AiAj

2ωd̂didj
, ∀j 6= i.

Then, by using the norm ||.||∞ of the Jacobian, from (26)
and (31), we see that (24) is a contraction mapping when∥∥∥∥∂BR(p)

∂p

∥∥∥∥
∞

=

max
i

{∑
j 6=i

∣∣∣∣ 1/2− γNi/Ci
(−Ni)(1− γNi/Ci)

AiAj

2ωd̂didj

∣∣∣∣
}
< 1. (32)

It is straightforward to see that the sufficient condition to sat-

isfy (32) is maxi

{
Ai

|2ωd̂diNi|

∑
j 6=i

Aj

dj

}
≤ 1, which is equivalent

to

ω ≥ max
i

{
Ai
∑
j 6=iAj/dj −A2

i d̂(1− 1/(did̂))

2βid̂di

}
. (33)

We have shown that with condition (33), the best response
update is a contraction mapping. Furthermore, according to
Theorem 1, we have the existence of a fixed-point of the
mapping (24). Hence, based on the convergence property of
contraction mapping, we complete the proof.
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