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Abstract—Pricing is an effective approach for spectrum access efficiency by exploiting the unused spectrum in dynamically
control in cognitive radio (CR) networks. In this paper, we changing environments [3]. In a cognitive radio network
study the pricing effect on the equilibrium behaviors of selish (CRN), there are two types of users, namely, primary user

secondary users’ (SUs’) data packets which are served by a CR L
base station (BS). From the SUs’ point of view, a spectrum aess (PUs) and secondary user (SUs). In CRN, the transmission

decision on whether to join the queue of the BS or not is charac channel is licensed to the PUs while the SUs opportunigyical
terized through an individual optimal strategy that is joining the access the channel resources when it is not occupied by any
gueue with a joining probability. This strategy also requires each pU.

SU to know the average queueing delay, which is a non-trivial Among the various dynamic spectrum access (DSA), the

problem. Toward this end, we provide queueing delay analysiby - .
using the M/G/1 queue with breakdown. From the BS'’s point of opportunistic DSA (O-DSA) and dedicated DSA (D-DSA)

view, we consider a duopoly market based on the two paradigms have been widely used in the literature [4]. D-DSA allows
the opportunistic dynamic spectrum access (O-DSA) and the the dedicated-spectrum base station CEBSperate without
mixed O-DSA & dedicated dynamic spectrum access (D-DSA). interruption from PUs (i.e., no PUs operation). O-DSA, on

In the first paradigm, two co-located opportunistic-spectum BSs i .
utilize freely spectrum-holes to serve SUs. Then, we show g¢h the other hand, forces the opportunistic-spectrum basersta

advantages of the cooperative scenario due to the unique stibn (BS°) to provide secondary services without harming the op-
that can be obtained in a distributed manner by using the dual erations of PUs on the leased spectrum. Here, the inteorupti
decomposition algorithms. For the second paradigm, therera of the operations of the BSis modeled as the break down
one opportunistic-spectrum BS and one dedicated-spectrurBS.  of M/G/1 queueing system. In this paper, we study pricing-

We study a price competition between two BSs as a Stackelberg : :
game. The cooperative behavior between two BSs is modeled asbased spectrum access to control a queueing system in CRN.

a bargaining game. In both paradigms, bargain revenues of ta e consider an arrival process of SU customers (e.g., calls,

cooperation are always higher than those due to competitioin ~ packets or sessions), arriving at the"B&nd BS. The base

both cases. Extensive numerical analysis is used to valigabur stations (BSs) control the service provision of SU cust@mer

derivation. through pricing-based methods with two market models: the
Index Terms—cognitive radio, duopoly, Stackelberg game, O-DSA model and a mixed O-DSA & D-DSA model.

bargaining game, M/G/1 queue. In the first market model, O-DSA, by considering SUs that
share a PU’s single channel, we examine the effect of the
|. INTRODUCTION BSP's pricing on the equilibrium behaviors of noncooperative

HE radio spectrum is one of the most scarce and valuaisit) customers. Due to the higher priority of PUs, when PUs
T resources for wireless communications. However, sorR€cupy the channel, the BSstops serving SU customers,
surveys that report on actual measurements show that migdt the B® has a breakdown. Therefore, the B8scillates
Of the a”ocated Spectrum iS |arge|y under-uti”zed [1]7]&[‘ between two states of ON/OFF as illustrated in F|gl Each
views on the under-utilization of the allocated spectrurmeveSU customer can make a decision about whether to join the
reported by the Spectrum-Policy Task Force appointed Byieue or to leave the queue, e.g., by discarding the packet.
Federal Communications Commissions (FCC) [2]. CognitivENe waiting time in the queue incurs a cost. Certainly, there

radio (CR) has been proposed as a way to improve Spectrafﬁ situations in which the demand of a service is relatively
inflexible, then, in such cases, SU customers can have a
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balk time overhead. In [9], the authors found the socially optima
queue @ strategy, from the viewpoint of each customer, in a CRN in
% | becision which the server suffers from service interruption. Howeve
|:|_' making # » the shortcoming is that each SU must observe the queue length
join @ to make a decision, whether to join the queue or not. The
current queue length can be received by a broadcast packet
from the BS. But the queue length is normally dynamic and
changes rapidly. We, however, use an unobservable queue

case [10], [12], [13] which models appropriately the non-
cooperative and distributed nature of CRN where SUs have

in which each SU customer as a player in a non-cooperati information about each other. o _
game makes its spectrum access decision based on its utilitf? hese gueueing models, multiple service interruptions
function that captures the queueing delay. We next show tivé also been examined in terms of server vacations or
there exists a unique symmetric Nash equilibrium of this gamPréakdowns models [9] and [10]. The work in [10] used the
In order to evaluate SUS' average queueing delay; we Jentinuous model; however, the services time was restricte
M/G/1 queue with the server breakdowns model. Taking inf8 the exponential distribution for ease of analysis. In {8
account the BS's strategy in the second question, we us@uthors used the discrete-time model where all distribstiof
revenue-optimal pricing policy to maximize the BSrevenue arriva_\ls and services were simply limited to be Binomialdis
by solving a convex optimization problem. In order to answdfiPutions. In [12], the authors have modeled the channel ON
the third question, we assume that two ®Smay compete OFF process by using renewal theory. To obtain the expected
against each other. Game theory can also be used here, wetifH€ing delay, the authors must perform a Laplace tramsfor
derive the Nash equilibrium solution in the O-DSA market. OWhich requires the full information of the probability détys

the other hand, two B%s can cooperate in order to enhancé!nction (pdf) of service time of PUs and SUs, respectively.
network utilization. Then, the bargaining game is firstheadis 10 the best of our knowledge, we are the first to use M/G/1
to answer how two B%s should cooperate. Furthermore, th&lUeue subject to breakdowns where the PUs and SUs service

Nash bargaining equilibrium of the price can be obtained intine distributions can be of a general distribution. We mode
distributed manner by using the dual decomposition alguorit the channel ON-OFF process as the breakdown process of the

In the second market model. mixed O-DSA and D-DSAPSOS Therefore, we only require the first and second moment

one BS and one B8 interact with each other by varying theirOf service time Of_PUS and SUs.

admission price. The Stackelberg equilibrium of the price i Among the various D,SA approaches, the O-DSA models
the mixed O-DSA and D-DSA is derived for competitive behave_ beef‘ W|d§aly considered in [9)], [,12,]’ [13]. However,
havior. On the other hand, when the Bsnd BS are cooper- we _f|rstly investigate the d_uopoly bargaining problem in the
ative, we need to solve the bargaining problem. Unfortdyatepr'c'.ng'based approaches in CRN where twd’B&re coop-

the general bargaining problem is not a convex proble Eatlve. On the other hand,_ the D-DSA models_ have not been
However, by setting appropriate bargaining parameters, gcussed broadly except in [10] and [14]. Elias et al. have

prove that the bargaining problem with appropriate parametus.ed afS|mpIehM/M/dl tﬂue;e modellj)lr;] orpier tfo fotfl\lljs kon the
is a convex problem and the Nash bargaining equilibrium [gice o anarchy and the dynamic behavior ol Network users

Fig. 1. lllustration of queuing system with breakdowns.

the price can be obtained in a distributed manner by using tl;.s'ng populan?n games kand repllcatortgyr}grryis |nd([jl4].
dual decomposition technique. n this paper, as far as we know, we are the first to address

The remainder of this paper is organized as follows. [i€ cooperation between Bsand BS! in the mixed O-DSA

Section II, we discuss related works. The system model §P-DSA model by using the Nash bargaining solution.

introduced in Section Ill. In Section 1V, the expected qurge

delay and the individual optimal behaviors of SU customers Il. SYSTEM MODEL

are derived. The non-cooperative and cooperative duodoly oIn this section, we first introduce the O-DSA model and
O-DSA are discussed in the Section V. The duopoly market eérver breakdown from PUs. Then, we explain about the D-
the mixed O-DSA and D-DSA model is analyzed in SectioBSA model.

VI. Finally, conclusions are given in Section VII.

A. O-DSA Model

We start by defining the model for a system with a single
In this work, we focus on the pricing strategy and it®U’s channel. The PUs’ channel oscillates between twosstate
impact on the equilibrium strategy of SU customers and B8 ON and OFF. Suppose that when the PUs’ channel is
in a queueing system, which can be traced from the origif@N, PUs would release the channel at an exponential rate
work of [5], [6], [7], [8]. Recent works such as [9] and [10]B. With perfect sensing, the probability of the CR base statio
are categorized into pricing approaches in spectrum accesk be able to serve a SU customer for an additional time
control in CRN. There are several existing works that carsidz without breaking down i P2 Once the PU occupies the
either the observable or unobservable queueing model. Tdf@nnel, the service time of PU is assumed to be a random
observable queue models in [9] and [11] either require variableX, with the pdffx (x). Assume that the SU customer is
centralized control server or a feedback mechanism wiserving by the CR base station when a breakdown occurs, can

Il. RELATED WORKS
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Delay Then, we analyze the expected queueing delay and derive the

Dner individually optimal strategy.

A. SU’s Individual Utility

When an SU customer wants to be served at th®, B& SU
: decides whether to let the SU customer to join th€BJueue
0 Prs Price ps or leave it. A first-in-first-out (FIFO) rule can be implemedt
in the queue of the B% There exists a waiting cost d
units per time unit, which is continuously accumulated from
the time that the SU customer arrives at the system until the
time the SU customer leaves after being served. In practical
resume the unfinished transmission instead of retransmittisystems, the cost represents the penalty for the delay or
the whole connection [15]. The service time of SU customek@ffic congestion. The admission fep, is charged by the
is a random variabl¥, with the pdffy (y). The total number BSC as the subscriber fee (i.e., SUs are price-takers). Every
of SU customers arrive at the network according to a Poiss8K customer receives a reward or a service valu® ofits
process with arrival rate\. With these above aspects, thdor finishing with a service. For example, given the admissio
spectrum usage model in this paper is based on the M/Gice pq of the B the rewardR equalspg +C671(pq), that

Diin

Fig. 2. An example of delay functiof(pg).

break down model [16]. is, the cost that SU customers pay to obtain service from the
BsY when SU customer choose balk from theB®e assume
B. D-DSA Model that the SU customers’ decisions are made only at theirarriv

We assume the BScan lease a part of the dedicatedime. Similar to [9], the net benefit of an SU customer that
spectrum. This spectrum chunk is divided into multiple kgndstays in the system for time units and successfully finishes
each of which has the same bandwidth as the single band of the service is
BSP?. Since there is no PU traffic on these dedicated bands, the U=R-CT-p. (2)

SU services are not interrupted in this case. We considér tha
the BS! always has sufficient numbers of dedicated bands. TR¥Viously, the net benefit could be negative when the delay
SU customers’ service times are exponential with paraneter! is sufficiently large. We assume that the SU customer will
Then, the expected queueing delay of SU customers is equatfi@ose to join the queue if the net benefit is not negativeelf t
1/6. In both previous works [10] and [14], the authors assuni&J customer chooses not to join the queue, the corresponding
that the parameter/B is constant although the SU customerget benefit will be zero. In order to perform the SU customer’s
pay different prices for admission. However, in this papefdividual optimal strategy, each SU customer must esémat
we assume that the expected queueing delay in D-DBA 1the mean queueing delay, which will be analyzed in the
is a concave function of the admission pripg. The higher following subsection.
admission price,py, the more leased dedicated bandwidth
can be used for serving SU customers; consequently, the less _ .
expected queueing delay SU customer is. For example, %eQueuemg Delay Analysis
expected queueing delay @ can be expressed as a concave We use the M/G/1 queueing model with breakdowns to
function as follows analyze the average queueing delagwaiting time + serving
1 Dmax time). By using the traffic parameters (i.e., SU customers’
O "(pa) = Clog(e * = pa), pa € [0, Fna (1) arrival rateA, PUs occupy the channel at an exponential rate
where{ > 0 is the predefined delay sensitivity level. Figp, the pdf of the service time of Pl (x) and the pdf of the

2 illustrates the expected queueing delay functiort(py), service times of SU customefs(y)), which are assumed to
whereDnax is the maximum delay that the SU customer cabe estimated by existing methods [17], the average queueing
tolerate andDmi, is the minimal expected queueing delayielay T()\) induced by arbitrary SU customers’ arrival rate
that the BS can provide to SU customers due to bandwidtat the BS is analyzed as follows.
limitation. Here ,Pnaxis the maximum admission pgic_e charged Due to multiple breakdowns at the BShe original service
by the BS! and can be obtained &= o pat time of the SU customer is increased as illustrated in Fig. 3.

is, when the SU customers pay more ttiay for admission, We call this increased service time as the effective settiioe
the BS! cannot supply better services with lower expecteffich is denoted by a random variablg Then, the M/G/1
queueing delay thaDmin. This assumption is reasonablélU€U€ing system with server breakdowns can be represented

due to the fact that the SU customer paying more shold theé M/G/1 queue with its average service tire|.
obtain better service (e.g. service with a lower-than-etgze MOreover, this queue is stable when the condifion 1/E[Ye]

queueing delay). is satisfied. _ o
We start the analysis by denotiny(A) as the average
IV. INDIVIDUALLY OPTIMAL STRATEGY waiting time in the queue induced by arrival rate Then,

In this section, we discuss the optimal strategy of each V¢ obtain
customer. We first explain about the SU’s individual utility TA)=WQA) +E[Ye]. (3)
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Due to the Pollaczek-Khinchin formula [18], the averag&hen, using (9), we obtain

waiting time is calculated as follows

— .. AE[YZ
() = 2L—NENS) 4)

Then, the problem requires the derivation&j] and E[Y?].

E[YZ] = Var(Ye] + (E[Ye])? = BE[Y]E[X?] + (1+BE[X])’E[Y?].
(12)

3) The expected queueing def@yA): characteristics and
examples with analysis and simulation comparisdsng (3)

1) E[Ye] Derivation Let N(y) denote the number of timesand (4), we obtain the final results as follows

that the BS breaks down while it is serving the SU customer

given that the service time of the SU customer requjresits;

then we assumy, Xz, ..., Xy(y) are, respectively, the amounts 2(1-AE[Ye)

AE[YE]

TA) = +E[Ye], (13)

of time of the different PUS Who are occupying the channglhere E[Ye] and E[Y?] are defined by (9) and (12),

Then, we have
N(y)

Ye= 3 Xty (5)

where the numbeN(y) of PUs occurs in(0,y) is a Poisson

random variable with meaBy. Thus, the random variable=
N(y)

spectively. Note that the stable condition of the queue is
A< 1/E[Ye] = gvyres gepy- _

In order to characterize the functidn(A), let us consider
its first and second derivatives in the intenv@, 1/E[Ye]).
Then, we easily prove that (\) >0 andT"(A) > 0. Hence,
T(M) is a convex and strictly increasing continuous function

Z X is a compound Poisson random variable with Poissd (0, 1/E[Ye]).

meanBy We have

E[S = ByE[X], (6)
Var(§ = ByE[X?. @
Therefore, the conditional expectation\efgivenY =y is
N(y)
E[YelY =] = ZXJY y| +y=E[S+y=ByEX]+y.

(8)

Therefore, the unconditional expectation¥gfis obtained as
follows

E[Ye = EIY(1+BEX])] = EN]1+BEX]).  (9)

2)E[Y2] Derivatiort Similarly, the conditional variance of
Ye givenY =y is

N(y)

Var[Ye]Y =y] = Var Z XY =y| = Var(S) = ByE[X?].
(10)
Using the conditional variance, we have
Var|Ye] = E[Var[Ye|Y]] + Var[E[Ye| Y]] (12)
= BE[Y]E[X?] + (1 + BE[X])?Var]Y].
Ye
ON
f U OFF

Z4 Z, Z3

Fig. 3. A sample ON-OFF process with a realization of an é&ffecservice
time Ye where the PUs’ channel at state OFF will continue being OFFRafo
additional timeZ;, Z, and Z3 before changing to state O, Xz and X3

are corresponding ON periods, respectively.

We give a comparison between analysis and simulation
through three following cases.

1) The first case is that ak andY have the exponential
distributions withfx (x) = pxe ®™* and fy (y) = pye MY,
respectively. This combination is called tlixp case
and we obtain

1 B )
E[Y 1+ — 14
vl = (14 5 14)
2 27 2B 4B
"7 5o T o+ 2°
My By BxHy o By
2) The second case is that ZllandY have the Erlang dis-
tribution with fx (x) = p&xe ¥ and fy (y) = Pye ™Y,
respectively. This combination is called tl&l case
and we have

E[Ye] =

(15)

1 B
E[Ye] = uv (1+ le) (16)
2
E[Y3 = — + 126 1 5 + 24p 17)

u% TR AT TS
3) The third case is called thExpErl case X has the
exponential distribution wittx (x) = pxe *™* andY has
the Erlang distribution witHy (y) = p2ye *Y. We obtain

E[Ye] = HZY (1+ B) (18)

2
4B 128 6
UY TR TR
In order to demonstrate our queueing analysis, we simulate
a single-server queue subject-to-server break down. We fix
Mk = 0.5, gy = 1 in all of the Exp, Erl and ExpErl cases. The
comparison between analysis and simulation is presented in
two scenarios: Fig. 4(a) illustrates a PUs heavy traffic thode
in urban areas witlf§ = 1.5, while Fig. 4(b) represents for a
PUs light traffic model in rural areas witg = 0.5. As can
be seen from these two figures, the queueing delays of the
PU’s heavy traffic model are higher than those of the PU’s
light traffic model. Despite the variation of numerical seis,

E[Y&] =

(19)
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Fig. 4. Average queueing delay performance comparison
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(b) PUs’ light traffic modelg = 0.5, px = 0.5 anduy=1.

Fig. 4 shows that our analysis correctly coincides with thequilibrium joining probabilityge (and associated equilibrium

simulation results.

C. Individual Equilibrium Strategy

arrival rate Ae = ge/\), by the property that no individual
SU customer trying to obtain a non-negative expected net
benefit has any incentive to deviate unilaterally from joqi

In this subsection, we investigate the SU customers'’ strafémbab”ity_qe()‘e)- Then, given an admission prige we have
gies based on the queueing delay estimation, the Nash ed{yR cases:

librium, and the equilibrium convergence. 1)

We consider a stream of potential arriving SUs who are self-
optimizing, which means that each SU customer concerned
only with his or her own benefit. Specifically, upon arrival, 2)
each potential SU customer has to make an individual decisio
about whether to join the queueing system or balk with the
goal of obtaining a non-negative expected net benefit. In the
context of game theory, the potential SU customers behave
like players in a noncooperative game, and the decisiongtabo
joining or balking are their strategies.

We start by analyzing SU customers’ behavior in the
equilibrium when the potential SU customer arrival rate is
A (i.e, the arrival rate of SU customers who intend to access
the BS).

A definition of an individual optimal strategy is provided as
follows. We consider the SU customers’ strategies desdribe
by a probabilityq which is the probability an SU customer
decides to join the queue (thus, with probability- §j the SU
customer decides to leave the queue).

Since SU customers are assumed to be selfish, they will
individually and selfishly chooseg: each SU customer wants
to obtain a non-negative expected net benefit. The net benefit
for an SU customer who joins the queue and finishes his or
her service with effective arrival rafe(i.e., the arrival rate of

p+CT(A) <R Thus, all SU customers will join with
probability ge = 1, and hence their expected utility is
R-CT(A)—p=>0.

p+CT(0) < R< p+CT(A). Since the average queueing
delayT (M) is a continuous and monotonically increasing
function with variable effective arrival ratg, given p,
there exists a unique equilibrium arrival ratg(p) such
thatR= p+CT(Ae) as follows

P = OREN — 2pE[Ye + CE[Y2] — 2CE[Ye2’
(21)

For a given effective arrival rate:(p), the expected net
benefit is

q(R=CT(Ae) — p) =0, (22)

and it does not depend on the joining probabilgy
Thus, SU customers are indifferent among all joining
probability g such that 0< q < 1, so that they have no
incentive to deviate from the joining probability

2(R—p-CE[Vy)
Ae(P)  2REYg 2pE[Ye] 1 CE[YZ] _2CE[YG]
Oe = AN A . (23)

We supplement the individual equilibrium strategy anaysi

SU customers who have already decided to join the queue)vgth the numerical results by different cases. The relatdm
U =R—CT(A) — p. The SU customer who balks receives zerbetween SU individual arrival rates(p) and admission price
net benefit. For a given effective arrival ratethe individually p is described in Fig. 5. The more the price increases, the
optimizing SU customer who joins with probabilityreceives less the SU customers enter the system. Therefore, we can
an expected net benefit as follows conclude that the pricing mechanisms can be used by tfe BS
= = to regulate the SU customer arrival rate to obtain a specific

QR-CT(N)—p)+(1-90=aR-CTA) —p).  (20) T P

To avoid a trivial solution, we make the following assump- Equilibrium Convergence: We consider a discrete-time
tion: p+CT(0) < R. Motivated by the concept of symmet-model with time periods indexed=1,2,.... At each period,
ric Nash equilibrium, we define an individually optimal orthe SU customers’ joining probability i§ during a period,
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the parameterf=100,C =1, =2, gy = 1.2 andux = 0.5; (1) the channel
follows the ExpErl case; (2) the channel follows the Exp ¢c#3gthe channel
follows the Erl case.

A. Monopoly Market: B%s Revenue Maximizing

We assume that there is one BSNe consider the system
from the point of view of the B whose goal is to set an
admission price to maximize its revenue. Specifically, when
which is assumed to last sufficiently for the system to rekeh tcharging a pricep, the revenue of the BScan be defined
stable state. From the same initial joining probabitify the as T(p) = Ae(p)p, and the revenue maximizing problem is
dynamics of SU customers’ joining probability can be updateXpressed as
via a gradient algorithm as follows

(24)

max T(P) = AeP

st.  p=R-CT(Ae).

(26)

where[x]é denotes the projection afon [0, 1] and the function In order to transform the problem (26) into a convex form, we
change the variablp to A¢ and obtain an equivalent problem

F(q) is defined as

_¥):| dx

as follows

(25)

SinceT(gA\) is a convex function with respect t F(q) is
a convex function. Wheir’(qe) = 0, F(q) has the minimum

point atge. Thus, with appropriate step size# ), the iteration
in (24) converges to the equilibrium joining probabildy for

any starting poing? € [0,1] [27].

S.t.

max T(Ae) = Ae [R—CT(Ae)]

(27)

0< Ae < Min{A,1/E[Y¢]}.

SinceT (Ae) is a convex and increasingly continuous function,
1(Ae) is a strictly concave function in the intervd, 1/E[Ye]).

Thus, we obtain the unique optimal solutidfil by setting the
first derivative ofmi(Ae) to zero. Then, we have

V. MONOPOLY AND DUOPOLY IN O-DSA MARKET MODEL

This section answers the question: what are pricing strate-

gies in the duopoly scenario in the O-DSA model? In order fhere © = CE[Y¢] + 2RE[Y¢] — 2CE]
understand the behavior of BSin the duopoly market, we P Of (26) is given as follows

introduce the individual optimal pricing strategy of a ding

BS® who aims to maximize its own revenue in a monopoly
market. In particular, the SU customer will make its decisioln conclusion, by setting the admission prip& and SUs
to join or balk based on the prices charged by thé®BS employ the individual optimal strategy, the B®an regulate
illustrated by Fig. 6(a). Then, we discuss the duopoly modtle arrival rate of SU customers at ra{8 such that it achieves
by two scenarios into two parts: i) two BSare competitive; the maximum revenua™ = A\Tp™.
i) two BSPs are cooperative through bargaining in the ONumerical results: In order to examine the shape of the
DSA model. In the O-DSA duopoly market (cf. Fig. 6(b))revenue functiont(Ae), we provide three examples. The

there are two O-DSA base stations denoted by BSd BS,

2
AT min{ E1 V/CENMZIQ

[Ye]  E[Ye]Q

p"=R—CT(AJ).

a/\}a

(28)

Ye]z. The optimal price

(29)

shapes of the revenue functiatriAe) are shown in Fig. 7.

and SU customers make a decision to join eithef BEBS?  All revenue functions are concave and obtain the maximum
at (\",AJ,A]") = (0.086,0.183 0.042), respectively.

(or neither).
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B. Duopoly Market: Non-cooperative Model (A1,A2) cannot be the optimal solution, which contradicts
with our assumption. On the other hand, Nf + A2 =

We consider a duopoly market where%&nd B§ compete
%e cannot improvery (A1) or Tp(A2) by replacingAs by

with each other by setting the adm|SS|on price to maximi
their revenues as shown in Fig. 6(b). We assume that the— MIN{AT,A—A2}. Therefore, we have proved theorem

arriving SU customers are individual optimizers. Thenggia i ) u
particular admission pric; (i = 1, 2) of the B§ (i=1,2), the Using Theorem 1, problem (31) can be rewritten as follows

SU customer’s equilibrium arrival rate at the B satisfies max T(A2) = A2p2 (32)
the equilibrium conditionshj(R— CTi(Aj) — p) = 0. As a P2=0,A2

player, for a given admission priga of the BS, the BS will s.t. R= p2+CT2(A2),

determine the best reply admission prige Motivated by the M+ =A

concept Nash equilibrium, we define equilibrium admission 1

prices (pi° p5°), due to the property that no BStrying 0<A < ENGI (15 BoEDG])

to maximize its own revenue has any incentive to deviate _ _ _
unilaterally from the value of its admission price. In thid)sing the first equality constraint of (30) and (32), we can
noncooperative game, we assume that th@B&e., players) rewrite the problem (32) as follows

know the other’s utility function so that they can determine A CT1(A—As) — CT(\ 33
the Nash Equilbirum by using the following procedure. pgg)iz 2(P1+CTa 2) 2(A2)) (33)
Both BSY and B fix their admission prices simultane- st p1+CT1(A1) = p2+CT2(A2),
ously. Given the admission priqge, then the best response of 1
BS? that maximizes the revenue at 8% obtained as follows. 0<Az2< ENGI(1+ BEDG])
max (A1) =A1p1 (30)  The above optimization is solved by differentiating the ob-
P1=t _ jective function with respect th, to determine the (necessary)
S.t. R=p1+CT1(A), first-order condition for the value of, to be optimal value
A +A2 <A, such as
1 — -
0< < P2 = A2(CT1 (A~ A2) +CT5(A2). (34)

EM1](1+B1E[Xd])’

whereA is the total arrival rate of all SU customers.
Similarly, given the admission pricp;, the best response
of BSY that maximizes the revenue at & given as follows

Similarly, using the symmetric relation, the first-ordendo
tion for the value ofA; to be optimal given the admission
price py is obtained as follows

= M(CT1(A1) +CTH(A = 1)) 35
max Tu(A2) = A2p2 (31) P1=A1(CT1(A1) +CT2(A—A1)) (35)
F220.32 _ Combining (34) and (35), we have
s.t. R=p2+CT2(A2), -, -,
A+ A <A, p1— P2 = (2A1 —A)(CT1(A1) +CTo(A—A1)). (36)
0<\, < 1 From the first equality constraint of (30) and (32), we obtain
AV .
E[Y2](1+B2E[X2]) p1— P2 = CT2(A—A1) —CT1(A1). (37)

We divide two cases in terms of variabfe by the critical
point A"+ A%, whereAT" andA%! is the optimal solution of the
revenue maximizing of the monopoly in (27). To(A—A1) —T1(A1) = (A1 —A)(T1(AD) + To(A—=A1)).
(1) Case LAT+AJ < A. Both Ty(A1) and (A2) are con- (38)
cave functions with the maximum valug (A]") and To(AJ')
since T1(A1) and T2(A2) are convex and strictly increasing
continuous functions. Then, the optimal solutions of (30 a )
(31) are(A],AJ) which are also the Nash equilibrium arrivai/\ 2(A—A1)). In order to find a root o5(A) =

rate (A1, A%, Thus, the Nash equilibrium admission prices We can resort to root-finding algorithms. One possible
are pncl ’ R— CT1(A) and pi* = R— CTo(AY). numerical method is the bisection method with logarithmic
o=

(2) Case 2:A < A"+ A0 We have the theorem as follows. complexity [19]. Then, the valua2® is easily obtained by
Theorem 1'TheL optizmal equilibrium solutionf\]¢, A%°) of using the equation®+A3° = A, Usrng the first equality
(30) and (31).must satisfy[C 1 AL° — 172 constraints of (30) and (31), we obtain the Nash equilibrium

admission pricegp}®, p5°) = (R—CT1(A]%),R—CT2(A5%)).
Proof: We assume that there exrsts an optimal equilib Note that given the admission priga, from (33), the best

H m m
flum solution (A1, ) such thathy + Az < A < AT+ A5 and o660 of B can be expressed in terms of the arrival rate
(tu(A1); T(A2)) is the maximum value. We have either < variableh, as

AT or A2 < AJ' (or both). Suppose we havg < AT". Due to

Then, we finally obtain

Finding the solution of (38) is equivalent to finding the root
of Gg)\l) O WhereG()\l) = Tz(/\ — )\1) —Tl()\l) — (2)\1 —

strict concawty ofmy(+), m(-) is increasing |r{)\l,)\m) Denote max Az (p1+CT1(A—A2) —CT2(A2)) (39)
A =min{A A~ 22}, thentg(A)) > (A1) andA] +Az2 <A, A2
Therefore, by unilaterally changing from to )\’, we have a st 0<A < !

better solution(\},Az) such thatry (A;) > T (\1). Therefore, T T EMJ(1+BEX])



8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOPUBLICATION

TABLE | . . . . .
EQUILIBRIUM ARRIVAL RATE IN SIX SCENARIOS: (1) B=2, iy = 1.2AND 1) N_aSh _Bargalnln_g SolutionA bargaining game is defined
Hx =0.5; (1) B=2,py = 1.2AND px = 0.6; (1) B=15, by = 1.2AND iy~ as a situation in which two (or more) players can mutually
=0.5(v)B=15py =1.2AND ki = 0.6; (V) B=3, 1y = L.2AND Ix = hanefit from reaching a certain agreement but have confiictin

0.6; (vI)B=3,dy =1.2AND px = 0.5;C = 1. THE FIRST CHANNEL . . . .
FOLLOWS THEEXPERL CASE AND THE SECOND CHANNEL FoLLows THE INterests in their the agreement. Therefore, we can mogel th

EXP CASE case as the bargaining game betweeﬁ B&d B§ who share
the SUs’ customer market. We again assume the utility func-

Scenario | Total ar- | Equilibrium The roduct . =
rival rate ar?ival rate | revenue P tions of B§ and Bé) are T[l()‘_l) =Mpr=A»A1 [R_CTl()_\l)]
_ A (A3, A0) T8 (A1)TR(A2) andm(A2) =Az2p2 =A2 [R—CT2(A2)]. Then, mathematically,
0) 0.120 Eg-gigvg-g%gg gz-gé; the bargaining problem can be formulated as follows
) 0138 | (0.064,0.074), | 384; A g
(0.043,0.095) 30.7 ;\T?;( [Ttl()\l) dl] [T[Z()\Z) d2] ) (42)
(i) 0.150 (0.070,0.080); 457, ’
(0.046,0.104) 35.8 1 0<M <
™ 0171 [ (0.081,0.090), | 617, S =M= EM](1+BE[X])’
(0.047,0.124) 45.0 1
(v) 0.100 no existence no existence 0<A < ,
(vi) 0.083 no existence no existence E[Y2](1+ B2E[X2])

OS)\1+A2§A’

Solving the above problem, we obtain the best responsaarriyhere the pair(di,dz) is the disagreement point that is the

rate AB(py) of the BS. From the first constraint of (33), theQuicome if two B$'s fail to reach an agreement [22)w,
best response admission prige corresponding to a given 2) aré constant and denote the bargaining power ¢t B

price p1 is obtained as follows BS3, respectively. - _ _
2) The Dual Decomposition Algorithnithe Nash bargain-

P5(p1) = p1+CT1(A—A8(p1)) —CT2(A3(p1)). (40) ing solution of the cooperative game can be solved in a
distributed manner by using the dual decomposition algorit
as follows. In order to decompose problem (42), we rewrite
problem (42) as follows

Similarly, given a pricepy, the best response price of 39;
obtained as follows

P?(Pz) = p2+CT2 (/\ - )\?(Pz)) - CTl (A?(Pz)) . (41) max W1|Og(T[1()\1) _ dl) +W2|Og(T[2()\2) _ dz), (43)

The Nash equilibrium points can be found by identifying the Moo 1
intersection points of the reaction curve of both®SWe can st 0<A < ,
draw the best response price of thedB& a function of the E[V](1+ BaE[Xa])
price py. Similarly, we can draw the best response price of 0< N\ < ,
the BS). When a solution of (38) does exist, the two reaction E[Y2](1+ B2E[X2])
curves have an intersection point that is an equilibriunmpoi 0< A +A <A

However, the solution of (38) may be neither unique nor ev
exists. Therefore, it may lead to a multiple Nash equilibriu
points scenario or a non-convergent oscillation scendyo.

eébth (A1) and e(A2) are strictly concave functions since
Ti(A1) andTz(A2) are convex and strictly increasing continu-

comparing the product revenue between multiple Nash equlft):)us functions. Then, problem (43) is convex. We can solve

. : - .__problem (43) in the distributed manner by using the dual
rium points, the B8s would choose the most efficient pnCé;ecomposition algorithms [23], [24], [25] and [26]. We first

equilibrium. f the L o functi foll
We clarify the equilibrium analysis in the non—cooperativeOrm € Lagrangian function as Tollows
game through numerical results by the following six scergari L(A1,A2,V)

As can be seen in Table I, the equilibrium does not exist fer th

two scenarios (v) and (vi) because the roots of (38) are non- = wulog(t (A1) — d) +wzlog(Te(Az) - dz)

real or non-positive. There are two equilibria for four saeos —VAr+A2—=A),
(i), (i), (i) and (iv) with different product revenue vaks = [wylog(my (A1) —d1) — VA4)
T (A2)Te(A2). In the next subsection, we will discuss the + [Walog(T(A2) — d2) — VA2] 4 VA, (44)

duopoly in the cooperative game, which has a unique solution _ o _ _
and can be solved in a distributed manner. By comparid§ierev > 0 is the Lagrange multiplier associated with the

the product revenue valum(A\2)Te(\2), we will show the inequality constrainfi +Az <A. We want to maximize the
advantages of the cooperative model. L(-) function from which we can decompose it into two

different problems, presented as follows

C. Duopoly Market: Cooperative Model max  w log(Tg(Ai) — di) — VA (45)
In this subsection, we assume that{Bsnd BS are not ' 1
competitive but cooperative through bargaining. Bargajni st 0<A < m,i =12,
| 1

theory is categorized in cooperative game theory [20],,[21]
[22]. Here, we will find a Nash bargaining solution of thevhich has unique solutiok; (v) for givenv due to the strict
cooperative game between $and BS. concavity of lodm(\;) —di).
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The dual function is given as 0.1
g(v) =[log(tu (A7) — d1) — VA]] + [log(T(A5 — d2)) — VAS] % 0.08} 00 6 "
(46) g
£ o086l N o B i O W o B i = = 1
+ VA. g
The master dual problem is ‘_E 0.04 8 bbb Db Db B bbb bbb
<3 SB
. g 4
@ 0.02F R G Ay ol Ky e Ky @
5n2|51 g(v). 47) 2 a--"’“ﬁ ‘ 1 2 3 4
Using the gradient method, the Lagrange multiplieris % 5 10 15 20 25
updated as follows lteration
V(t+1) = [v(t) —a(A=Ni(t) = A5t)] T, (48) Fig. 9. The convergence of the equilibrium arrival rate wihr BS® with

di=0,wi=1(=1234), A\=02,R=100 andC = 1: (1) BS with the
wheret is the iteration indexp > 0 is a sufficiently small ExpErl channelf =2, py = 1.2 and%x = 0.5; (2) BS) with the Exp channel,
e _ai + At =2,y = 1.2 andux = 0.5; (3) BS with the Erl channel =2, py = 1.2,
positive ;tep size and]" denotes t_he pro;egtlon onto theﬁx Z0.5; (4) B with the Exp channel — 15, py = 1.5 andhy = 0.2
nonnegative orthant. The dual variablgt) will converge
to the dual optimaiv* ast — o since the duality gap for
the problem (43) is zero and the solution to (45) is uniqu
the primal variable;(t) obtained by solving (45) will also
. X o
converge to the primal optlmal valm-f_' ) Flnal!y, we h%\/ecghe cooperative model in four of the scenarios.
dual algorithm to determine the optimal arrival rad%(A5°) . . . . .
: . ) L 4) Multiple Base Stations ScenarioThe price setting
of problem (43) in Algorithm 1. Since problem (43) is convex
; A - . . problem can also be analyzed when severaP8Sach of
and the Slater’s condition is satisfied, the optimal dualip . . . .
. ; ; : which operate in a different PU band, are available. The
is zero [27]. Thus, the solutiom\{(t), A5(t)) will converge

. . e ; SU customer’s decision in this case is joining to one of the
to the optimal solutionX5°,A5°). Then, the equilibrium prices : o X
are (%, pS) = (R—CT1(AS%),R—CTo(A%)). BSPs based on the estimated delay and the admission prices.

Suppose that there ake (N > 2) BS1° (i=1,...,N)inthe SU

_ _ i _ markets, then the duopoly market can be extended to consist
Algorithm 1 Dual Algorithms to find the Nash bargaining,¢ multiple B§. The bargaining game betwedh BSO can

ﬁg. 8(b) shows that the product revenue of the cooperative
model is always higher than the product revenue of the non-

solution be formulated as
« Parameters: each Bs{i =1,2) can estimate the param- N
eters of the utility functionmg(-) and the SU customer max () — i)™ (49)
arrival rate/\ based on existing estimation methods [17]; N il:l
« Initialize t = 0 andv(0) equals to a certain nonnegative 1 _
value: st 0<A < _ —,1=1...,N,
' EIV](L+ BEX])
1) Each B§ (i=1,2) locally solves its problem by com- 0<SN A <A
puting (45) and then broadcasts the solutiit); - zi:l =
2) Each B§ (i = 1,2) updates the Lagrange multipliergy using the dual decomposition algorithm, we can obtain
v(t+1) with the gradient iterate (48); the equilibrium arrival rate of the above problem. Therefor
3) Sett+1—t and go back to step 1 (until satisfying thepy using the bargaining game theory, we can easily extend
termination criterion); the duopoly scenario to multiple BS. Furthermore, the

advantages of bargaining game is that it can be solved in a

3) Numerical Resultsin order to compare the numericaldistributed manner, which helps the policy maker design a
results with the non-cooperative model, we use six scesar@od model to optimize resource allocation. We demonstrate
(i), (i), (iii), (iv), (v) and (vi) as shown in Table | in the the multiple BS®s by an example with four channels. Fig. 9
duopoly market in the non-cooperative model section. Hig) 8 shows the quick convergence of the equilibrium arrival rate
presents the convergence of the SU customers’ equilibriratained by the dual decomposition algorithms and demon-
arrival rate Aj(t) which is updated according to the duabtrates that the cooperative model can be applied for ngt onl
algorithms. With all six scenarios mentioned in the presiodhe duopoly model but also for multiple BSs scenarios.
section, we obtain six equilibrium arrival rate’s{{,A5°) as
(0.056,0.064), (0.065,0.073), (0.071,0.079), (0.08189),
(0.046,0.054), (0.039,0.044), respectively. With therapp-
ate step sizen, the dual algorithm converges quickly to the
optimal value as shown in Fig. 8(a). We consider a cognitive radio system in which there is one

In order to show the advantage of the cooperative modE;DSA base station denoted by Baind one BS. The B!
we compare the bargaining product revermg))T(A2) can rent a licensed dedicated band for a certain cost. Given
between the two models: the non-cooperative and cooperatie total arrival raté\, SU customers choose to join the queue
model in four scenarios. Since the equilibrium does nottéxis of the BS with an admission price, or join the queue of
the two scenarios of (v) and (vi) in the non-cooperative nhod¢he BS with an admission pricgq as illustrated in Fig. 10.

VI. DUOPOLY IN MIXED O-DSAAND D-DSA MARKET
MODEL
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(a) The convergence of the equilibrium arrival raf€ in six scenarios(b) Comparison the bargain product revermgA1)To(A2) between
non-cooperative (NC) and cooperative (CO) model.

Fig. 8.  Numerical parametersl; = dy = 0 andw; =w, =1 in six scenarios (i), (ii), (iii), (iv), (v) and (vi).

We organize this section into three subsections. The first
BS® one analyzes the non-cooperative model between th® BS
and the BS by using the Stackelberg competition in the
A duopoly model. In the second subsection, we investigate the
cooperative behavior between theBand B§, and solve the
BS* bargaining problem by the dual composition algorithm. The
numerical results are shown in the third subsection.

Fig. 10. Duopoly market in mixed O-DSA and D-DSA model.

Given the priceg, and pg, SU customers will individually
determine a strategy, of the probability that SU customersA. Non-cooperative Model
decide to join the BS queue (thus, with probabilitgy =
1—qgo SU customers acquire the §B The expected cost

when acquiring the s is given by We now investigate the non-cooperative model in which

the B and BS selfishly maximize their own revenues. In
CO *(pa) + P (50) order to compete with each other, the BSets the pricep,

where6-1(py) and py are the expected queueing delay antp Maximize its own revenue given the pripg of the BS,
the admission fee of the 85 Thus, given the equilibrium SU and vice versa. Specifically, we model the strateg|.c-|ntgmc
customer arrival ratd, = goA at the B, the total cost of an between the B$and B® as a Stackelberg competition in the

SU customer who chooses the 8% given by duopoly market [28], [29]. Here, the expected queueingydela
_ for SU customer accessing the B8lepends on the quality
Po+CT(Ao). (51) of the PU's channel (i.e., pdfy(y) and B). However, the

At the equilibrium point, the cost of the BSs equal to the BsY owns the license and possibly decides to decrease the
cost of the BS. Therefore), can be obtained by solving theexpected queueing delay/@ by acquiring more bandwidth
equilibrium equation to serve SU customers. Hence, thedB&n be a dominant
= rovider by keeping the price and expected queueing dela
C8”*(Pa) + Pa = Po+CT (Ao). (52) gf su cust}(/)merspsgfficien?ly small. ThlE)S, we aqssume tghat thg
To avoid a trivial solution in equality constraint (52), wensd is the game leader and the 8% the game follower. In
assume that there exists a set of pridp§, py] € [0,Pmad  the Stackelberg game, the BSas the so-called first-move
such thatpg +C8*(pg) > CT (0),¥pa € [py, Pj]. The revenue advantage, which means that the B&dapts its decisions
obtained by the BY is defined as follows to maximize its revenue by anticipating the BSresponse.
2\ P, (53) Then, we use backward induction to derive the Stackelberg

equilibrium of the prices, which are denoted hy;(p3), in a
whereAq = dg/\ is the equilibrium SU customer arrival rate auopoly as follows.

the BS. Similarly, the revenue obtained by the BB given S )
by 1) Follower BS’s Revenue MaximizationFirst, given the

BS%s admission pricepy, the BS aims to determine the
™2 (54) ; ; i
= AoPo- optimal SU customer arrival rate]' at the BS and optimal
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price pJ' by solving the following problem: In order to transform the original bargaining problem (60)
into a convex problem, we go through two steps as follows:
{[],apf AoPo (55) Step 1: We setdy = do = 0 and take the logarithm of the
st Po=Pd+CO pa) —CT(o), ]E)ubrj]i;g\r/]e function in order to obtain the following objeti
0 < Ao <min{A,1/E[Y¢|},
0 < Po < Prnax max Wqlog(Agpd) +Wolog(Aopo). (61)

where Pray is the maximum price SU customer may afford. Step 2:We relax the equalith(Ao, Po, Ad, Pa) = 01in (60) by
By replacing po in the first constraint and setting the firs@ convex inequalityi(Ao, Po,Ad, Pa) < O sinceh(Ao, Po, Ad, Pa)
derivative of objective function to zero, we obtain the optl is a jointly convex function. Thus, we have the following

arrival rateAy' as follows convex problem:
max  Wglog(Agpg) + Wolog(Aopo) (62)
)\m( ) . mln{ 1 B CE[YE.Z]Q/ /\} (56) Ao, PoAd;Pd

ol P =MMERT ™ "ENJQ st. h(Ao, Po,Ad, Pa) <O,
where Q' = CEYZ]+2(Co(pq) + pa) E[Ye] — 2CE[Ye2 AotAa=A,
Then, we obtain the optimal price™ of (55) as follows 0 < Ao < min{A, 1/E[Ye]},

_ 0<A\g <A,
PT(pa) = pa+COL(pa) — CT(AT). (57) —he=

0 < Po, Pd < Pmax
2) Leader BEs Revenue Maximization:Knowing the

BS?s best-respons&™ and pl, the B determines its Lemma 2:Problem (60) and the convex problem (62) are

admission pricepg by solving the following problem equivalent.
Proof: Sinceh(Ao, po,Ad, Pd) IS monotonically increasing
max T(pg) = pa[A —AM(pg)] (58) in po, according to [27], we can guarantee that at any optimal
Pd solution Q§, Py, Ay, Pjy) of the convex problem (62), we have
st 0<pd < Pmax h(Ag, pg, A, Pjy) = 0. It can be proved by using contradiction as

3) Stackelberg Equilibrium Summaryfhe maximization follows. Suppose*thfre*is an optimal solutiag, (o, Ag, Pg) Of
(58) can be solved by finding the root of the first derivatiotf2) Such thah(Ag, po,Ag, Pg) < 0. Sinceh(Ao, Po,Ad; Pa) and
d(pg) = 0. As before, we can use a standard root-findirf§§® objective function of (61) are monotonically increasin
algorithm such as the bisection method with logarithmiBo: W€ can increaspo while staying in the boundary. Thus, by

complexity [19]. Thus, the Bs Stackelberg equilibrium of increasingp, we increase the objective and increase the func-

admission price is given as tion h(-). It contradicts the supposition thatN( ps. Ay, p;) is
. the maximum value. [ |
P = PE(P3) = p3+CO *(p) —CT ()\[,"(pg)). (59) Using Lemma 2, we can solve the (nonconvex) problem
(60) by solving the convex problem (62). We then form the
B. Cooperative Model Lagrangian function as

In this subsection, vg investigate the cooperative belnavioL()\o Ad, Pos Ad, Pd,V, B)
between the B and BS'. We assume that there is a revenue I
= wglog(A log(A
sharing contract which encourages coordination between th Walog(Aapa) +wolog( Op_o) 1
BsY and BE. Then, we will see how the cooperation makes —Y(Ao+Ad—A) =n[Po+CT(Ao) —CO*(pa) — Pa), (63)
the revenue better off as compared to the case in which thg)are, n >0 are the Lagrange multipliers associated with

selfishly maximize their own profits from the social point 0fy equality and inequality constraints. We take a dual de-
view. We consider the cooperative problem as the fo”OW"’tQ)mposition approach, and (62) is decomposed into the two

bargaining problem subproblems:
W, Wo
Ao Poga b (1t' — o)™ (1€ — o) (60) max. wq log(Agpg) — VAg+Npa+nCe *(pa) (64)
R _ d:Pd
S.t. Po+CT(Xo) = pa+C8*(pa), st 0<Ag <A,
Aot Aa =N, 0< Pa < Prax
0< Ao <min{A,1/E[Y¢]},
and
0<Ag <A,
0 < Po, Pd < Pmax max wo log(Aopo) — VAo —NCT(Ao) —NPo  (65)
The first constraint of (60) can be expressed s.t. 0< Ao < min{A,1/E[Y]},
as  h(Ao,Po,Ad;pa) = 0 where h(Ao,po,Ad, Pd) = 0 < Po < Pmax

Po + CT(Ao) — pg — CO1(pg). Since h(Ao,po, pg) is not
affine, then problem (60) is not a convex optimizatiomhe optimal solutionsX{), (p3), (Ag) and (pg) of (64) and
problem. (65) for a given set of Lagrange multiplietssand B define
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the dual function as follows 10 18]
g(v,n) = V(A =A5 =) +n[CO(pY) + pg — Py — CT(AY)] = b
+Wqlog(Apg) +Wolog(Aspy)- (66) i o]
4
Then, the master dual problem is given as 2 6:
N7, R

[min, g(v,n) (67)

Since Qy), (pg), (A and () in (64) and (65) are unique 012
due to the strict concavity @80~1(pg) and—T (A,), by using

(vili)

the gradient method, we can solve the dual problem by the °% 02
following updating Lagrangian multipliers: 0.04 01
V(t+1)=v(t) —as(A—A5(t) —A4(t)), (68) 000l 7 A(_) ool 277 e
N(t+1) = [n(t) — a2(C*(pa) + pi(t)
_ p:;(t) —-CT [Aé(”])]ﬁ (69) Fig. 11. The revenue® comparison between noncooperative model (NC)

and cooperative model (CO).
wheret is the iteration indexpy; > 0 anda, > 0 are suffi-
ciently small positive step-sizes. Then, we have the caoper
tive dual algorithm that implements the Nash bargaining-solD. Multiple Base Stations Scenario
tion distributively between the BXand B§I in Algorithm 2. The study of the general setting with multip{bBSd andN
As a consequence of the assumptigi+CO-*(pY) > CT(0), BS®, where each BS competes to all others, is very difficult.
with sufficient small9, € and the continuity o (-) and6~%(-), However, once additional assumptions are added, it may be
the point (Ao, Po,Ad, Pa) = (8,0,A — 8, py —€) satisfies the possible to solve for the equilibrium point. We considér
Slater’s condition. Since problem (62) is convex, the optimto be the number of PU bands in the system. By a certain
duality gap is zero [27]. Thus, the solutiop(t), pg(t)) and spectrum allocation mechanism, each PU baiisl assigned
(A5(t), Ag(t)) will converge to the optimal solution. to a BY. We assume that there is a B&hich only operates
- - . on the PU band and competes with the §8The spectrum
Algorithm 2 Cooperative dual ilgonthms allocation mechanism also assigns a group of SU customer
« Input parameters: functio@T (.), 8 *(pa), C and the SU  typei who is operating in the spectrum PU bandach BS
customer arrival raté\, independently sets the prig® to compete with the 3@‘; We
+ Initialize t =0 andv(0), n(0) equal to some value; g5 n0se than BSUs belong to a Primary Operator (PO) and
1) B locally solves its problem by computing (64); thefine PO sets the same admission prigeor all N BSJs. Then

sends the solutiong(t) and pj(t) to BS®; _ the cooperative or non-cooperative game betv\NGBSd and

2) BS locally solves its problem by computing (65); therBsO can be considered partial separately as in Subsections
sends the solution(t) and p;(t) to BSd; VI.B and VI.C.

3) Both BS and Bd update the Lagrange multiplie(t +
1) andB(t + 1) with the gradient iterate (68) and (69); VIlI. CONCLUSION

4) Go back to step 1 (until satisfying the termination |, i naner, we considered the decision-making process of
criterion); SU customers and the optimal pricing of the BS. The impact

of PU’s emergence is modeled as a server with breakdowns.
_ Explicit expressions for the equilibrium in SU customers’
C. Numerical results behaviors are obtained. In the O-DSA model, the®BS
We supplement the equilibrium analysis through the numegsricing strategy for revenue maximization is formulatedi an
ical results by the following four scenarios. Table Il show shown to be a convex optimization problem, which is
the comparison between the noncooperative (NC) model agslved directly. Then, the unique Nash bargaining solution
cooperative (CO) model. From Table Il, the product reverfue for the cooperative duopoly scenarios are obtained by the
cooperative model is always higher than the product revengigcomposition algorithm. In the mixed O-DSA & D-DSA
of the non-cooperative model in four scenarios. Furtheemoimodel, we formulate competitive and cooperative behawbrs
Fig. 11 shows that the revenu® of the B in the cooperative the B and the B by Stackelberg and bargain game theory,
model is always higher than that in the noncooperative modgdspectively. By choosing appropriate bargaining pararset
At the equilibrium of cooperative model in Table Il, the &ali  we obtain the bargaining solution by the decomposition-algo
rate A¢ increases in (vii) and (viii) cases, but it decreases iithm. The numerical results not only validate our analysis
(ix) and (x) cases. This shows that the change of the arriv@bo present the behaviors of BSs in the duopoly market. In
rate from the BS to the BS’ and vice versa does not imply anboth models, the cooperation between BSs helps them achieve
increase of the BSs’ revenue. The main reason of the reverigher product revenues. Furthermore, by using the decempo
increase is the rise of the equilibrium price in cooperation sition, the Nash bargaining equilibrium of the admissioicer
other words, the competition keeps the equilibrium pricg locan be obtained in a distributed manner that does not reveal
which in turn leads to the low revenue of the BSs. the BSs information.
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TABLE Il

13

COMPARISON OF NONCOOPERATIVE MODELNC) AND COOPERATIVE MODEL(CQO) IN FOUR SCENARIOS WITHWg =Wo = 1,C =2, = 10AND

Pmax=50: (Vi) EXP CHANNEL, B =2,y = 1.2AND px = 0.5;A =0.15; (Vi) EXP CHANNEL, B =15, by = 1.2,ux = 0.5;A =0.2; (IX) ERL CHANNEL,
B=2,uy =1.2,ux = 0.5;A =0.03; (X) ERL CHANNEL, B=1.5,py = 1.2,ux = 0.5;A = 0.04.

(1]

(2]
(31
(4]

(5]
(6]

(7]
(8]
El

[10]

(11]

[12]

(23]

[14]

[15]

[16]
[17]
(18]

[19]
[20]

[21]

[22]

(vii) (viii) (ix) x)

Equilibrium arrival rate X4,A0) of NC 0.046, 0.104 0.053, 0.147 0.025, 0.005 0.028, 0.012
Equilibrium arrival rate X4,A0) of CO 0.083, 0.067 0.109, 0.091 0.010, 0.020 0.024, 0.016
Equilibrium price (g, po) of NC 26.45, 15.66 28.23, 18.45 29.18, 2.79 25.28, 4.55

Equilibrium price (g, po) of CO 49.87, 37.25 49.90, 39.21 49.48, 14.92 49.62, 21.06
Product Revenuem® of NC 1.97 4.02 0.011 0.039

Product Revenuer® of CO 10.36 19.42 0.153 0.414

REFERENCES [23] D. P. Palomar and M. Chiang, “A tutorial on decompositimethods

R. W. Brodersen, A. Wolisz, D. Cabric, S. M. Mishra, andWillkomm, [24]
“Corvus: a cognitive radio approach for usage of virtualicerised
spectrum,”Berkeley Wireless Research Center (BWRC) White paper
2004.

F. C. Commissioret al, “Spectrum policy task forcefep. ET Docket [25]
no. 02-135, p. 215, 2002.

J. Mitola, “The software radio architectureJEEE Commun. Mag.
vol. 33, no. 5, pp. 26-38, 1995.

E. Hossain, D. Niyato, and Z. HarDynamic Spectrum Access and
Management in Cognitive Radio Network€ambridge University Press [27]
Cambridge, 2009.

P. Naor, “The regulation of queue size by levying tollE£onometrica:
Journal of the Econometric Societyol. 37, no. 1, pp. 15-24, 1969.
N. M. Edelson and D. K. Hilderbrand, “Congestion tollsr fBoisson
queuing processesizconometrica: Journal of the Econometric Socjety
pp. 81-92, 1975.

S. Stidham,Optimal Design of Queueing System£hapman & Hall,
2009.

R. J. Hassin and M. HavivJo Queue or not to Queue: Equilibrium
Behavior in Queuing SystemsSpringer, 2003.

H. Li and Z. Han, “Socially optimal queuing control in caigve radio
networks subject to service interruptions: to queue or nogueue?”
IEEE Trans. Wireless Commuyrvol. 10, no. 5, pp. 1656-1666, 2011.
K. Jagannathan, I. Menache, E. Modiano, and G. Zussrtidan-
cooperative spectrum accesses the dedicated vs. fregwspetttoice,”
IEEE J. Sel. Areas Commurvol. 30, no. 11, pp. 2251-2261, 2012.
C. T. Do, N. H. Tran, C. S. Hong, and S. Lee, “Finding anividual
optimal threshold of queue length in hybrid overlay/unagrspectrum

[26]

[28]
[29]

for network utility maximization,”|IEEE J. Sel. Areas Commuyrwol. 24,
no. 8, pp. 1439-1451, 2006.

N. H. Tran and C. S. Hong, “Joint rate control and speutmllocation
under packet collision constraint in cognitive radio neted’ in Proc.
2010 Global Telecommunications Conferenpp. 1-5.

N. H. Tran, C. S. Hong, and S. Lee, “Joint congestion k@nand
power control with outage constraint in wireless multihogtworks,”
IEEE Trans. Veh. Technolvol. 61, no. 2, pp. 889-894, 2012.

——, “Cross-layer design of congestion control and powentrol
in fast-fading wireless networksJEEE Trans. Parallel Distrib. Syst.
vol. 24, no. 2, pp. 260-274, 2013.

S. Boyd and L. Vandenberghe& onvex Optimization
university press, 2004.

D. Fudenberg and J. Tirol&ame Theory MIT Press, 1991.

B. Wang, Z. Han, and K. Liu, “Distributed relay selecti@and power
control for multiuser cooperative communication netwouking Stack-
elberg game,IEEE Trans. Mobile Computvol. 8, no. 7, pp. 975-990,
2009.

Cambridge

Cuong T. Do received his B.S. degree in informa-
tion technology at HaNoi University of Technology,
VietNam in 2008. Since 2010, he has been working
the combined MS and PhD degree at Department
of Computer Engineering, Kyung Hee University,
South Korea. His research interests include stochas-
tic network optimization, game theory, queueing the-
ory, cross-layer design, wireless scheduling design,
cognitive radio networks.

access in cognitive radio networkdEICE Trans. Commun.vol. 95,
pp. 1978-1981, 2012.

N. H. Tran, C. S. Hong, S. Lee, and Z. Han, “Optimal priciaffect
on equilibrium behaviors of delay-sensitive users in ctigmiradio
networks,” IEEE J. Sel. Areas Communvol. 31, no. 11, pp. 2266—
2579, 2013.

C. Do, N. Tran, M. V. Nguyen, C. seon Hong, and S. Lee, i8oc
optimization strategy in unobserved queueing systemsgnitiee radio
networks,”IEEE Commun. Lettvol. 16, no. 12, pp. 1944-1947, 2012.
J. Elias, F. Martignon, L. Chen, and E. Altman, “Jointeogtor pricing

Nguyen H. Tran (S'10-M'11) received the BS de-

gree from Hochiminh City University of Technology

and Ph.D degree from Kyung Hee University, in
electrical and computer engineering, in 2005 and
2011, respectively. He is an Assistant Professor with
Department of Computer Engineering, Kyung Hee
University. His research interest is using queueing
theory, optimization theory, control theory and game
theory to design, analyze and optimize the cutting-
edge applications in communication networks, in-

and network selection game in cognitive radio networks:ildgium,
system dynamics and price of anarchyZEE Trans. Veh. Technol.
vol. 62, no. 9, pp. 1-14, 2013.

L.-C. Wang, C.-W. Wang, and F. Adachi, “Load-balancisgectrum
decision for cognitive radio networksfEEE J. Sel. Areas Commun.
vol. 29, no. 4, pp. 757-769, 2011.

S. M. RossJntroduction to Probability Models Academic press, 2009.
X. Li and S. A. Zekavat, “Traffic pattern prediction anérformance
investigation for cognitive radio systems,” iRroc. 2008 Wireless
Communications and Networking Conferenpp. 894—899.

D. P. Bertsekas, R. G. Gallager, and P. HumHetta Networks2nd ed.
Prentice-hall Englewood Cliffs, 1992.

S. StrogatzNonlinear Dynamics and Chaos Addison-Wesley, 1994.
J. F. Nash Jr, “The bargaining problenitonometrica: Journal of the
Econometric Sociefypp. 155-162, 1950.

Z.Han, Z. Ji, and K. Liu, “Fair multiuser channel alldicen for OFDMA
networks using Nash bargaining solutions and coalitioHSEE Trans.
Commun. vol. 53, no. 8, pp. 1366-1376, 2005.

Z. Han, D. Niyato, W. Saad, and A. Hjgrungn€ame Theory in Wire-
less and Communication Networks: Theory, Models, and Aaipbns
Cambridge University Press, 2011.

cluding big data, cloud-computing data center, smart

grid and heterogeneous networks.



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOPUBLICATION

Choong Seon Hongreceived his B.S. and M.S. Long Bao Le (S'04-M’'07-SM’12) received the
degrees in electronic engineering from Kyung Hee B.Eng. (with Highest Distinction) degree from Ho
University, Seoul, Korea, in 1983, 1985, respec: Chi Minh City University of Technology, Vietnam,
tively. In 1988 he joined KT, where he worked on in 1999, the M.Eng. degree from Asian Institute
Broadband Networks as a member of the technice of Technology, Pathumthani, Thailand, in 2002, and
staff. From September 1993, he joined Keio Uni- the Ph.D. degree from the University of Manitoba,
versity, Japan. He received the Ph.D. degree at Kei Winnipeg, MB, Canada, in 2007. From 2008 to
University in March 1997. He had worked for the 2010, he was a postdoctoral research associate with
Telecommunications Network Lab., KT as a senio Massachusetts Institute of Technology, Cambridge,
member of technical staff and as a director of th MA. Since 2010, he has been an assistant professor
networking research team until August 1999. Since with the Institut National de la Recherche Scien-
September 1999, he has worked as a professor of the depadfrmmputer tifique (INRS), Université du Québec, Montréal, QC, Gdmavhere he leads a
engineering, Kyung Hee University. He has served as a Gler@#nair, research group working on smartgrids, cognitive radio aynthchic spectrum
TPC Chair/Member, or an Organizing Committee Member foermtional sharing, radio resource management, network control atichization for
conferences such as NOMS, IM, APNOMS, E2EMON, CCNC, ADSNwireless networks. Dr. Le is a member of the editorial boafdIEEEE
ICPP, DIM, WISA, BcN, TINA, SAINT, and ICOIN. Also, he is nowna Communications Surveys and Tutorigad IEEE Wireless Communications
associate editor of IEEE RANSACTIONS ON NETWORK AND SERVICE Letters He has served as technical program committee co-chairhef t
MANAGEMENT, International Journal of Network Managemertournal of Wireless Networks track at IEEE VTC 2011-Fall and the CagaitRadio
Communications and Networks, and an Associate TechnicabiEdf IEEE  and Spectrum Management track at IEEE PIMRC 2011.

Communications MagazineAnd he is a Senior Member of IEEE, and a
Member of ACM, IEICE, IPSJ, KIISE, KICS, KIPS and OSIA. Hissearch
interests include Future Internet, Ad hoc Networks, Nelwbtanagement,
and Network Security.

Zhu Han (S'01-M'04-SM’'09-F'14) received the
B.S. degree in electronic engineering from Tsinghua
University, in 1997, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland, College Park, in 1999 and 2003, respec-
tively.

From 2000 to 2002, he was an R&D Engineer
of JDSU, Germantown, Maryland. From 2003 to
2006, he was a Research Associate at the Univer-
L e Samsung Electronics Inc. from 1999 to 2008. He sity of Maryland. From 2006 to 2008, he was an
2 is an editor of theJournal of Korean Institute of assistant professor in Boise State University, Idaho.

Information Scientists and Engineers: ComputingCurrently, he is an Assistant Professor in Electrical anth@ater Engineering

Practices and Letters Department at the University of Houston, Texas. His reseanterests include
wireless resource allocation and management, wirelessnemncations and
networking, game theory, wireless multimedia, securitpgd ssmart grid
communication. Dr. Han is an Associate Editor of IEEERANSACTIONS ON
WIRELESSCOMMUNICATIONS since 2010. Dr. Han is the winner of IEEE
Fred W. Ellersick Prize 2011. Dr. Han is an NSF CAREER awamipient
2010.

Sungwon Lee received the Ph.D. degree from
Kyung Hee University, Korea. He is a professor of
the Computer Engineering Departments at Kyung
Hee University, Korea. Dr. Lee was a senior enginee
of Telecommunications and Networks Division at



