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Abstract—Pricing is an effective approach for spectrum access
control in cognitive radio (CR) networks. In this paper, we
study the pricing effect on the equilibrium behaviors of selfish
secondary users’ (SUs’) data packets which are served by a CR
base station (BS). From the SUs’ point of view, a spectrum access
decision on whether to join the queue of the BS or not is charac-
terized through an individual optimal strategy that is join ing the
queue with a joining probability. This strategy also requires each
SU to know the average queueing delay, which is a non-trivial
problem. Toward this end, we provide queueing delay analysis by
using the M/G/1 queue with breakdown. From the BS’s point of
view, we consider a duopoly market based on the two paradigms:
the opportunistic dynamic spectrum access (O-DSA) and the
mixed O-DSA & dedicated dynamic spectrum access (D-DSA).
In the first paradigm, two co-located opportunistic-spectrum BSs
utilize freely spectrum-holes to serve SUs. Then, we show the
advantages of the cooperative scenario due to the unique solution
that can be obtained in a distributed manner by using the dual
decomposition algorithms. For the second paradigm, there are
one opportunistic-spectrum BS and one dedicated-spectrumBS.
We study a price competition between two BSs as a Stackelberg
game. The cooperative behavior between two BSs is modeled as
a bargaining game. In both paradigms, bargain revenues of the
cooperation are always higher than those due to competitionin
both cases. Extensive numerical analysis is used to validate our
derivation.

Index Terms—cognitive radio, duopoly, Stackelberg game,
bargaining game, M/G/1 queue.

I. I NTRODUCTION

T HE radio spectrum is one of the most scarce and valuable
resources for wireless communications. However, some

surveys that report on actual measurements show that most
of the allocated spectrum is largely under-utilized [1]. Similar
views on the under-utilization of the allocated spectrum were
reported by the Spectrum-Policy Task Force appointed by
Federal Communications Commissions (FCC) [2]. Cognitive
radio (CR) has been proposed as a way to improve spectrum
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efficiency by exploiting the unused spectrum in dynamically
changing environments [3]. In a cognitive radio network
(CRN), there are two types of users, namely, primary user
(PUs) and secondary user (SUs). In CRN, the transmission
channel is licensed to the PUs while the SUs opportunistically
access the channel resources when it is not occupied by any
PU.

Among the various dynamic spectrum access (DSA), the
opportunistic DSA (O-DSA) and dedicated DSA (D-DSA)
have been widely used in the literature [4]. D-DSA allows
the dedicated-spectrum base station (BSd) operate without
interruption from PUs (i.e., no PUs operation). O-DSA, on
the other hand, forces the opportunistic-spectrum base station
(BSo) to provide secondary services without harming the op-
erations of PUs on the leased spectrum. Here, the interruption
of the operations of the BSo is modeled as the break down
of M/G/1 queueing system. In this paper, we study pricing-
based spectrum access to control a queueing system in CRN.
We consider an arrival process of SU customers (e.g., calls,
packets or sessions), arriving at the BSo and BSd. The base
stations (BSs) control the service provision of SU customers
through pricing-based methods with two market models: the
O-DSA model and a mixed O-DSA & D-DSA model.

In the first market model, O-DSA, by considering SUs that
share a PU’s single channel, we examine the effect of the
BSo’s pricing on the equilibrium behaviors of noncooperative
SU customers. Due to the higher priority of PUs, when PUs
occupy the channel, the BSo stops serving SU customers,
i.e. the BSo has a breakdown. Therefore, the BSo oscillates
between two states of ON/OFF as illustrated in Fig.1. Each
SU customer can make a decision about whether to join the
queue or to leave the queue, e.g., by discarding the packet.
The waiting time in the queue incurs a cost. Certainly, there
are situations in which the demand of a service is relatively
inflexible, then, in such cases, SU customers can have a
rule as follows: a SU customer will join the queue if the
benefit to him/her of being served exceeds the cost of the
average waiting time he/she experiences. Then, there are three
questions to answer: first, given an admission price charged
by the BSo, what is the individual optimal strategy of SU
customers?; second, what is the pricing strategy of the BSo to
maximize its revenue in the monopoly O-DSA market (i.e., a
market dominated by only one BS)?; and third, what are the
pricing strategies in the duopoly O-DSA market (i.e., a market
dominated by two BSs)?

Considering the first question from the SU customers’
viewpoint, we first introduce an individual optimal strategy,
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Fig. 1. Illustration of queuing system with breakdowns.

in which each SU customer as a player in a non-cooperative
game makes its spectrum access decision based on its utility
function that captures the queueing delay. We next show that
there exists a unique symmetric Nash equilibrium of this game.
In order to evaluate SUs’ average queueing delay; we use
M/G/1 queue with the server breakdowns model. Taking into
account the BS’s strategy in the second question, we use a
revenue-optimal pricing policy to maximize the BSo’s revenue
by solving a convex optimization problem. In order to answer
the third question, we assume that two BSos may compete
against each other. Game theory can also be used here, we can
derive the Nash equilibrium solution in the O-DSA market. On
the other hand, two BSos can cooperate in order to enhance
network utilization. Then, the bargaining game is firstly used
to answer how two BSos should cooperate. Furthermore, the
Nash bargaining equilibrium of the price can be obtained in a
distributed manner by using the dual decomposition algorithm.

In the second market model, mixed O-DSA and D-DSA,
one BSd and one BSo interact with each other by varying their
admission price. The Stackelberg equilibrium of the price in
the mixed O-DSA and D-DSA is derived for competitive be-
havior. On the other hand, when the BSd and BSo are cooper-
ative, we need to solve the bargaining problem. Unfortunately,
the general bargaining problem is not a convex problem.
However, by setting appropriate bargaining parameters, we
prove that the bargaining problem with appropriate parameters
is a convex problem and the Nash bargaining equilibrium of
the price can be obtained in a distributed manner by using the
dual decomposition technique.

The remainder of this paper is organized as follows. In
Section II, we discuss related works. The system model is
introduced in Section III. In Section IV, the expected queueing
delay and the individual optimal behaviors of SU customers
are derived. The non-cooperative and cooperative duopoly of
O-DSA are discussed in the Section V. The duopoly market of
the mixed O-DSA and D-DSA model is analyzed in Section
VI. Finally, conclusions are given in Section VII.

II. RELATED WORKS

In this work, we focus on the pricing strategy and its
impact on the equilibrium strategy of SU customers and BSs
in a queueing system, which can be traced from the original
work of [5], [6], [7], [8]. Recent works such as [9] and [10]
are categorized into pricing approaches in spectrum access
control in CRN. There are several existing works that consider
either the observable or unobservable queueing model. The
observable queue models in [9] and [11] either require a
centralized control server or a feedback mechanism with

time overhead. In [9], the authors found the socially optimal
strategy, from the viewpoint of each customer, in a CRN in
which the server suffers from service interruption. However,
the shortcoming is that each SU must observe the queue length
to make a decision, whether to join the queue or not. The
current queue length can be received by a broadcast packet
from the BS. But the queue length is normally dynamic and
changes rapidly. We, however, use an unobservable queue
case [10], [12], [13] which models appropriately the non-
cooperative and distributed nature of CRN where SUs have
no information about each other.

In these queueing models, multiple service interruptions
have also been examined in terms of server vacations or
breakdowns models [9] and [10]. The work in [10] used the
continuous model; however, the services time was restricted
to the exponential distribution for ease of analysis. In [9], the
authors used the discrete-time model where all distributions of
arrivals and services were simply limited to be Binomial dis-
tributions. In [12], the authors have modeled the channel ON-
OFF process by using renewal theory. To obtain the expected
queueing delay, the authors must perform a Laplace transform,
which requires the full information of the probability density
function (pdf) of service time of PUs and SUs, respectively.
To the best of our knowledge, we are the first to use M/G/1
queue subject to breakdowns where the PUs and SUs service
time distributions can be of a general distribution. We model
the channel ON-OFF process as the breakdown process of the
BSos. Therefore, we only require the first and second moment
of service time of PUs and SUs.

Among the various DSA approaches, the O-DSA models
have been widely considered in [9], [12], [13]. However,
we firstly investigate the duopoly bargaining problem in the
pricing-based approaches in CRN where two BSos are coop-
erative. On the other hand, the D-DSA models have not been
discussed broadly except in [10] and [14]. Elias et al. have
used a simple M/M/1 queue model in order to focus on the
price of anarchy and the dynamic behavior of network users
by using population games and replicator dynamics in [14].
In this paper, as far as we know, we are the first to address
the cooperation between BSo and BSd in the mixed O-DSA
& D-DSA model by using the Nash bargaining solution.

III. SYSTEM MODEL

In this section, we first introduce the O-DSA model and
server breakdown from PUs. Then, we explain about the D-
DSA model.

A. O-DSA Model

We start by defining the model for a system with a single
PU’s channel. The PUs’ channel oscillates between two states
of ON and OFF. Suppose that when the PUs’ channel is
ON, PUs would release the channel at an exponential rate
β. With perfect sensing, the probability of the CR base station
will be able to serve a SU customer for an additional time
z without breaking down ise−βz. Once the PU occupies the
channel, the service time of PU is assumed to be a random
variableX, with the pdf fX(x). Assume that the SU customer is
serving by the CR base station when a breakdown occurs, can
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Fig. 2. An example of delay functionθ−1(pd).

resume the unfinished transmission instead of retransmitting
the whole connection [15]. The service time of SU customers
is a random variableY, with the pdf fY(y). The total number
of SU customers arrive at the network according to a Poisson
process with arrival rateΛ. With these above aspects, the
spectrum usage model in this paper is based on the M/G/1
break down model [16].

B. D-DSA Model

We assume the BSd can lease a part of the dedicated
spectrum. This spectrum chunk is divided into multiple bands,
each of which has the same bandwidth as the single band of the
BSo. Since there is no PU traffic on these dedicated bands, the
SU services are not interrupted in this case. We consider that
the BSd always has sufficient numbers of dedicated bands. The
SU customers’ service times are exponential with parameterθ.
Then, the expected queueing delay of SU customers is equal to
1/θ. In both previous works [10] and [14], the authors assume
that the parameter 1/θ is constant although the SU customers
pay different prices for admission. However, in this paper,
we assume that the expected queueing delay in D-DSA 1/θ
is a concave function of the admission pricepd. The higher
admission price,pd, the more leased dedicated bandwidth
can be used for serving SU customers; consequently, the less
expected queueing delay SU customer is. For example, the
expected queueing delay 1/θ can be expressed as a concave
function as follows

θ−1(pd) = ζ log(e
Dmax

ζ − pd), pd ∈ [0,Pmax], (1)

whereζ > 0 is the predefined delay sensitivity level. Fig.
2 illustrates the expected queueing delay functionθ−1(pd),
whereDmax is the maximum delay that the SU customer can
tolerate andDmin is the minimal expected queueing delay
that the BSd can provide to SU customers due to bandwidth
limitation. Here,Pmax is the maximum admission price charged

by the BSd and can be obtained asPmax= e
Dmax

ζ −e
Dmin

ζ . That
is, when the SU customers pay more thanPmax for admission,
the BSd cannot supply better services with lower expected
queueing delay thanDmin. This assumption is reasonable
due to the fact that the SU customer paying more should
obtain better service (e.g. service with a lower-than-expected
queueing delay).

IV. I NDIVIDUALLY OPTIMAL STRATEGY

In this section, we discuss the optimal strategy of each SU
customer. We first explain about the SU’s individual utility.

Then, we analyze the expected queueing delay and derive the
individually optimal strategy.

A. SU’s Individual Utility

When an SU customer wants to be served at the BSo, the SU
decides whether to let the SU customer to join the BSo’s queue
or leave it. A first-in-first-out (FIFO) rule can be implemented
in the queue of the BSo. There exists a waiting cost ofC
units per time unit, which is continuously accumulated from
the time that the SU customer arrives at the system until the
time the SU customer leaves after being served. In practical
systems, the costC represents the penalty for the delay or
traffic congestion. The admission fee,p, is charged by the
BSo as the subscriber fee (i.e., SUs are price-takers). Every
SU customer receives a reward or a service value ofR units
for finishing with a service. For example, given the admission
price pd of the BSd, the rewardR equalspd+Cθ−1(pd), that
is, the cost that SU customers pay to obtain service from the
BSd when SU customer choose balk from the BSo. We assume
that the SU customers’ decisions are made only at their arrival
time. Similar to [9], the net benefit of an SU customer that
stays in the system forT time units and successfully finishes
the service is

U = R−CT − p. (2)

Obviously, the net benefit could be negative when the delay
T is sufficiently large. We assume that the SU customer will
choose to join the queue if the net benefit is not negative. If the
SU customer chooses not to join the queue, the corresponding
net benefit will be zero. In order to perform the SU customer’s
individual optimal strategy, each SU customer must estimate
the mean queueing delay, which will be analyzed in the
following subsection.

B. Queueing Delay Analysis

We use the M/G/1 queueing model with breakdowns to
analyze the average queueing delayT (waiting time + serving
time). By using the traffic parameters (i.e., SU customers’
arrival rateλ, PUs occupy the channel at an exponential rate
β, the pdf of the service time of PUfX(x) and the pdf of the
service times of SU customersfY(y)), which are assumed to
be estimated by existing methods [17], the average queueing
delayT(λ) induced by arbitrary SU customers’ arrival rateλ
at the BSo is analyzed as follows.

Due to multiple breakdowns at the BSo, the original service
time of the SU customer is increased as illustrated in Fig. 3.
We call this increased service time as the effective servicetime
which is denoted by a random variableYe. Then, the M/G/1
queueing system with server breakdowns can be represented
as the M/G/1 queue with its average service timeE[Ye].
Moreover, this queue is stable when the conditionλ < 1/E[Ye]
is satisfied.

We start the analysis by denotingW(λ) as the average
waiting time in the queue induced by arrival rateλ. Then,
we obtain

T(λ) =W(λ)+E[Ye]. (3)
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Due to the Pollaczek-Khinchin formula [18], the average
waiting time is calculated as follows

W(λ) =
λE[Y2

e ]

2(1−λE[Ye])
. (4)

Then, the problem requires the derivation ofE[Ye] andE[Y2
e ].

1) E[Ye] Derivation: Let N(y) denote the number of times
that the BS breaks down while it is serving the SU customer
given that the service time of the SU customer requiresy units;
then we assumeX1,X2, ...,XN(y) are, respectively, the amounts
of time of the different PUs who are occupying the channel.
Then, we have

Ye =
N(y)

∑
i=1

Xi + y, (5)

where the numberN(y) of PUs occurs in(0,y) is a Poisson
random variable with meanβy. Thus, the random variableS=
N(y)

∑
i=1

Xi is a compound Poisson random variable with Poisson

meanβy. We have

E[S] = βyE[X], (6)

Var[S] = βyE[X2]. (7)

Therefore, the conditional expectation ofYe givenY = y is

E[Ye|Y = y] = E

[

N(y)

∑
1

Xi |Y = y

]

+ y= E[S]+ y= βyE[X]+ y.

(8)

Therefore, the unconditional expectation ofYe is obtained as
follows

E[Ye] = E[Y(1+βE[X])] = E[Y](1+βE[X]). (9)

2)E[Y2
e ] Derivation: Similarly, the conditional variance of

Ye givenY = y is

Var[Ye|Y = y] = Var

[

N(y)

∑
1

Xi |Y = y

]

= Var(S) = βyE[X2].

(10)

Using the conditional variance, we have

Var[Ye] = E[Var[Ye|Y]]+Var[E[Ye|Y]] (11)

= βE[Y]E[X2]+ (1+βE[X])2Var[Y].

Ye

X2 X3

Z2 Z3

X1

ON

OFF

Z1

Fig. 3. A sample ON-OFF process with a realization of an effective service
time Ye where the PUs’ channel at state OFF will continue being OFF for an
additional timeZ1, Z2 and Z3 before changing to state ON.X1, X2 and X3
are corresponding ON periods, respectively.

Then, using (9), we obtain

E[Y2
e ] = Var[Ye]+ (E[Ye])

2 = βE[Y]E[X2]+ (1+βE[X])2E[Y2].
(12)

3) The expected queueing delayT(λ): characteristics and
examples with analysis and simulation comparisons.Using (3)
and (4), we obtain the final results as follows

T(λ) =
λE[Y2

e ]

2(1−λE[Ye])
+E[Ye], (13)

where E[Ye] and E[Y2
e ] are defined by (9) and (12), re-

spectively. Note that the stable condition of the queue is
λ < 1/E[Ye] =

1
E[Y](1+βE[X])

.

In order to characterize the functionT(λ), let us consider
its first and second derivatives in the interval(0,1/E[Ye]).
Then, we easily prove thatT ′

(λ) > 0 andT
′′
(λ)> 0. Hence,

T(λ) is a convex and strictly increasing continuous function
in (0,1/E[Ye]).

We give a comparison between analysis and simulation
through three following cases.

1) The first case is that allX andY have the exponential
distributions withfX(x) = µXe−µXx and fY(y) = µYe−µYy,
respectively. This combination is called theExp case,
and we obtain

E[Ye] =
1
µY

(

1+
β
µX

)

, (14)

E[Y2
e ] =

2

µ2
Y

+
2β2

µ2
Xµ2

Y

+
2β

µ2
XµY

+
4β

µXµ2
Y

. (15)

2) The second case is that allX andY have the Erlang dis-
tribution with fX(x) = µ2

Xxe−µXx and fY(y) = µ2
Yye−µYy,

respectively. This combination is called theErl case,
and we have

E[Ye] =
1
µY

(

1+
β
µX

)

, (16)

E[Y2
e ] =

6

µ2
Y

+
12β
µ2

XµY
+

12β
µXµ2

Y

+
24β2

µ2
Xµ2

Y

. (17)

3) The third case is called theExpErl case: X has the
exponential distribution withfX(x) = µXe−µXx andY has
the Erlang distribution withfY(y)= µ2

Yye−µYy. We obtain

E[Ye] =
2
µY

(

1+
β
µX

)

, (18)

E[Y2
e ] =

6

µ2
Y

+
4β

µ2
XµY

+
12β
µXµ2

Y

+
6β2

µ2
Xµ2

Y

. (19)

In order to demonstrate our queueing analysis, we simulate
a single-server queue subject-to-server break down. We fix
µx = 0.5, µY = 1 in all of the Exp, Erl and ExpErl cases. The
comparison between analysis and simulation is presented in
two scenarios: Fig. 4(a) illustrates a PUs heavy traffic model
in urban areas withβ = 1.5, while Fig. 4(b) represents for a
PUs light traffic model in rural areas withβ = 0.5. As can
be seen from these two figures, the queueing delays of the
PU’s heavy traffic model are higher than those of the PU’s
light traffic model. Despite the variation of numerical settings,



DO et al.: OPTIMAL PRICING FOR DUOPOLY IN COGNITIVE RADIO NETWORKS: COOPERATE OR NOT COOPERATE? 5

0.00 0.05 0.10 0.15 0.20 0.25

Arrival rate λ

0

50

100

150

200

T
h
e

a
v
e
ra

g
e

q
u
e
u
e
in

g
d
e
la

y

Exp analysis

Exp simulation

Erl analysis

Erl simulation

ExpErl analysis

ExpErl simulation

(a) PUs’ heavy traffic modelβ = 1.5, µX = 0.5 andµY=1.
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(b) PUs’ light traffic modelβ = 0.5, µX = 0.5 andµY=1.

Fig. 4. Average queueing delay performance comparison

Fig. 4 shows that our analysis correctly coincides with the
simulation results.

C. Individual Equilibrium Strategy

In this subsection, we investigate the SU customers’ strate-
gies based on the queueing delay estimation, the Nash equi-
librium, and the equilibrium convergence.

We consider a stream of potential arriving SUs who are self-
optimizing, which means that each SU customer concerned
only with his or her own benefit. Specifically, upon arrival,
each potential SU customer has to make an individual decision
about whether to join the queueing system or balk with the
goal of obtaining a non-negative expected net benefit. In the
context of game theory, the potential SU customers behave
like players in a noncooperative game, and the decisions about
joining or balking are their strategies.

We start by analyzing SU customers’ behavior in the
equilibrium when the potential SU customer arrival rate is
Λ (i.e, the arrival rate of SU customers who intend to access
the BSo).

A definition of an individual optimal strategy is provided as
follows. We consider the SU customers’ strategies described
by a probabilityq which is the probability an SU customer
decides to join the queue (thus, with probability 1−q the SU
customer decides to leave the queue).

Since SU customers are assumed to be selfish, they will
individually and selfishly chooseq: each SU customer wants
to obtain a non-negative expected net benefit. The net benefit
for an SU customer who joins the queue and finishes his or
her service with effective arrival rateλ (i.e., the arrival rate of
SU customers who have already decided to join the queue) is:
U =R−CT(λ)− p. The SU customer who balks receives zero
net benefit. For a given effective arrival rateλ, the individually
optimizing SU customer who joins with probabilityq receives
an expected net benefit as follows

q(R−CT(λ)− p)+ (1−q)0= q(R−CT(λ)− p). (20)

To avoid a trivial solution, we make the following assump-
tion: p+CT(0) < R. Motivated by the concept of symmet-
ric Nash equilibrium, we define an individually optimal or

equilibrium joining probabilityqe (and associated equilibrium
arrival rate λe = qeΛ), by the property that no individual
SU customer trying to obtain a non-negative expected net
benefit has any incentive to deviate unilaterally from joining
probabilityqe(λe). Then, given an admission pricep, we have
two cases:

1) p+CT(Λ) ≤ R. Thus, all SU customers will join with
probability qe = 1, and hence their expected utility is
R−CT(Λ)− p≥ 0.

2) p+CT(0)<R< p+CT(Λ). Since the average queueing
delayT(λ) is a continuous and monotonically increasing
function with variable effective arrival rateλ, given p,
there exists a unique equilibrium arrival rateλe(p) such
that R= p+CT(λe) as follows

λe(p) =
2(R− p−CE[Ye])

2RE[Ye]−2pE[Ye]+CE[Y2
e ]−2CE[Ye]2

.

(21)

For a given effective arrival rateλe(p), the expected net
benefit is

q(R−CT(λe)− p) = 0, (22)

and it does not depend on the joining probabilityq.
Thus, SU customers are indifferent among all joining
probability q such that 0≤ q≤ 1, so that they have no
incentive to deviate from the joining probability

qe =
λe(p)

Λ
=

2(R−p−CE[Ye])
2RE[Ye]−2pE[Ye]+CE[Y2

e ]−2CE[Ye]2

Λ
. (23)

We supplement the individual equilibrium strategy analysis
with the numerical results by different cases. The relationship
between SU individual arrival rateλe(p) and admission price
p is described in Fig. 5. The more the price increases, the
less the SU customers enter the system. Therefore, we can
conclude that the pricing mechanisms can be used by the BSo

to regulate the SU customer arrival rate to obtain a specific
objective.

Equilibrium Convergence: We consider a discrete-time
model with time periods indexedt = 1,2, .... At each periodt,
the SU customers’ joining probability isqt during a periodt,
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Fig. 6. SU customer market in the O-DSA model: (a) Monopoly and (b)
Duopoly.

which is assumed to last sufficiently for the system to reach the
stable state. From the same initial joining probabilityq0, the
dynamics of SU customers’ joining probability can be updated
via a gradient algorithm as follows

qt+1 =
[

qt −α(t)F ′(qt)
]1

0 =
[

qt −α(t)T(qtΛ)
]1
0 , (24)

where[x]10 denotes the projection ofx on [0,1] and the function
F(q) is defined as

F(q) =
∫ q

o

[

T(xΛ)−
R− p

C

]

dx (25)

SinceT(qΛ) is a convex function with respect toq, F(q) is
a convex function. WhenF ′(qe) = 0, F(q) has the minimum
point atqe. Thus, with appropriate step sizesα(t), the iteration
in (24) converges to the equilibrium joining probabilityqe for
any starting pointq0 ∈ [0,1] [27].

V. M ONOPOLY AND DUOPOLY IN O-DSA MARKET MODEL

This section answers the question: what are pricing strate-
gies in the duopoly scenario in the O-DSA model? In order to
understand the behavior of BSos in the duopoly market, we
introduce the individual optimal pricing strategy of a single
BSo who aims to maximize its own revenue in a monopoly
market. In particular, the SU customer will make its decision
to join or balk based on the prices charged by the BSo as
illustrated by Fig. 6(a). Then, we discuss the duopoly model
by two scenarios into two parts: i) two BSos are competitive;
ii) two BSos are cooperative through bargaining in the O-
DSA model. In the O-DSA duopoly market (cf. Fig. 6(b)),
there are two O-DSA base stations denoted by BSo

1 and BSo2 ,
and SU customers make a decision to join either BSo

1 or BSo
2

(or neither).
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Fig. 7. The revenue vs. equilibrium arrival rateλe in three examples with
the parameters:R= 100,C= 1, β = 2, µY = 1.2 andµX = 0.5; (1) the channel
follows the ExpErl case; (2) the channel follows the Exp case; (3) the channel
follows the Erl case.

A. Monopoly Market: BSo’s Revenue Maximizing

We assume that there is one BSo. We consider the system
from the point of view of the BSo whose goal is to set an
admission price to maximize its revenue. Specifically, when
charging a pricep, the revenue of the BSo can be defined
as π(p) = λe(p)p, and the revenue maximizing problem is
expressed as

max
p≥0

π(p) = λep (26)

s.t. p= R−CT(λe).

In order to transform the problem (26) into a convex form, we
change the variablep to λe and obtain an equivalent problem
as follows

max
λe

π(λe) = λe
[

R−CT(λe)
]

(27)

s.t. 0≤ λe ≤ min{Λ,1/E[Ye]}.

SinceT(λe) is a convex and increasingly continuous function,
π(λe) is a strictly concave function in the interval(0,1/E[Ye]).
Thus, we obtain the unique optimal solutionλm

e by setting the
first derivative ofπ(λe) to zero. Then, we have

λm
e = min{

1
E[Ye]

−

√

CE[Y2
e ]Ω

E[Ye]Ω
,Λ}, (28)

where Ω = CE[Y2
e ]+2RE[Ye]−2CE[Ye]

2. The optimal price
pm of (26) is given as follows

pm = R−CT(λm
e ). (29)

In conclusion, by setting the admission pricepm and SUs
employ the individual optimal strategy, the BSo can regulate
the arrival rate of SU customers at rateλm

e such that it achieves
the maximum revenueπm = λm

e pm.
Numerical results: In order to examine the shape of the
revenue functionπ(λe), we provide three examples. The
shapes of the revenue functionπ(λe) are shown in Fig. 7.
All revenue functions are concave and obtain the maximum
at (λm

1 ,λ
m
2 ,λ

m
3 ) = (0.086,0.183,0.042), respectively.



DO et al.: OPTIMAL PRICING FOR DUOPOLY IN COGNITIVE RADIO NETWORKS: COOPERATE OR NOT COOPERATE? 7

B. Duopoly Market: Non-cooperative Model

We consider a duopoly market where BSo
1 and BSo2 compete

with each other by setting the admission price to maximize
their revenues as shown in Fig. 6(b). We assume that the
arriving SU customers are individual optimizers. Then, given a
particular admission pricepi (i = 1,2) of the BSoi (i = 1,2), the
SU customer’s equilibrium arrival rateλi at the BSoi satisfies
the equilibrium conditionsλi(R−CT i(λi)− p) = 0. As a
player, for a given admission pricep1 of the BSo1 , the BSo2 will
determine the best reply admission pricep2. Motivated by the
concept Nash equilibrium, we define equilibrium admission
prices (pnc

1 , pnc
2 ), due to the property that no BSo

i trying
to maximize its own revenue has any incentive to deviate
unilaterally from the value of its admission price. In this
noncooperative game, we assume that the BSos (i.e., players)
know the other’s utility function so that they can determine
the Nash Equilbirum by using the following procedure.

Both BSo
1 and BSo2 fix their admission prices simultane-

ously. Given the admission pricep2, then the best response of
BSo

1 that maximizes the revenue at BSo
1 is obtained as follows.

max
p1≥0,λ1

π1(λ1) = λ1p1 (30)

s.t. R= p1+CT1(λ1),

λ1+λ2 ≤ Λ,

0≤ λ1 ≤
1

E[Y1](1+β1E[X1])
,

whereΛ is the total arrival rate of all SU customers.
Similarly, given the admission pricep1, the best response

of BSo
2 that maximizes the revenue at BSo

2 is given as follows

max
p2≥0,λ2

π2(λ2) = λ2p2 (31)

s.t. R= p2+CT2(λ2),

λ1+λ2 ≤ Λ,

0≤ λ2 ≤
1

E[Y2](1+β2E[X2])
.

We divide two cases in terms of variableΛ by the critical
point λm

1 +λm
2 , whereλm

1 andλm
2 is the optimal solution of the

revenue maximizing of the monopoly in (27).
(1) Case 1:λm

1 + λm
2 ≤ Λ. Both π1(λ1) and π2(λ2) are con-

cave functions with the maximum valueπ1(λm
1 ) and π2(λm

2 )
since T1(λ1) and T2(λ2) are convex and strictly increasing
continuous functions. Then, the optimal solutions of (30) and
(31) are(λm

1 ,λ
m
2 ) which are also the Nash equilibrium arrival

rate (λnc
1 ,λnc

2 ). Thus, the Nash equilibrium admission prices
are pnc

1 = R−CT1(λm
1 ) and pnc

2 = R−CT2(λm
2 ).

(2) Case 2:Λ < λm
1 +λm

2 . We have the theorem as follows.
Theorem 1:The optimal equilibrium solutions(λnc

1 ,λnc
2 ) of

(30) and (31) must satisfyλnc
1 +λnc

2 = Λ.
Proof: We assume that there exists an optimal equilib-

rium solution (λ1,λ2) such thatλ1+λ2 < Λ < λm
1 +λm

2 and
(π1(λ1); π2(λ2)) is the maximum value. We have eitherλ1 <
λm

1 or λ2 < λm
2 (or both). Suppose we haveλ1 < λm

1 . Due to
strict concavity ofπ1(·), π1(·) is increasing in(λ1,λm

1 ). Denote
λ′

1 = min{λm
1 ,Λ−λ2}, thenπ1(λ′

1)> π1(λ1) andλ′
1+λ2 ≤ Λ.

Therefore, by unilaterally changing fromλ1 to λ′
1, we have a

better solution(λ′
1,λ2) such thatπ1(λ′

1)> π1(λ1). Therefore,

(λ1,λ2) cannot be the optimal solution, which contradicts
with our assumption. On the other hand, ifλ1 + λ2 = Λ,
we cannot improveπ1(λ1) or π2(λ2) by replacing λ1 by
λ′

1 = min{λm
1 ,Λ− λ2}. Therefore, we have proved theorem

1.
Using Theorem 1, problem (31) can be rewritten as follows

max
p2≥0,λ2

π2(λ2) = λ2p2 (32)

s.t. R= p2+CT2(λ2),

λ1+λ2 = Λ,

0≤ λ2 ≤
1

E[Y2](1+β2E[X2])
.

Using the first equality constraint of (30) and (32), we can
rewrite the problem (32) as follows

max
p2≥0,λ2

λ2(p1+CT1(Λ−λ2)−CT2(λ2)) (33)

s.t. p1+CT1(λ1) = p2+CT2(λ2),

0≤ λ2 ≤
1

E[Y2](1+β2E[X2])
.

The above optimization is solved by differentiating the ob-
jective function with respect toλ2 to determine the (necessary)
first-order condition for the value ofλ2 to be optimal value
such as

p2 = λ2(CT
′
1(Λ−λ2)+CT

′
2(λ2)). (34)

Similarly, using the symmetric relation, the first-order condi-
tion for the value ofλ1 to be optimal given the admission
price p2 is obtained as follows

p1 = λ1(CT
′
1(λ1)+CT

′
2(Λ−λ1)). (35)

Combining (34) and (35), we have

p1− p2 = (2λ1−Λ)(CT
′
1(λ1)+CT

′
2(Λ−λ1)). (36)

From the first equality constraint of (30) and (32), we obtain

p1− p2 =CT2(Λ−λ1)−CT1(λ1). (37)

Then, we finally obtain

T2(Λ−λ1)−T1(λ1) = (2λ1−Λ)(T ′
1(λ1)+T

′
2(Λ−λ1)).

(38)

Finding the solution of (38) is equivalent to finding the root
of G(λ1) = 0, whereG(λ1) = T2(Λ−λ1)−T1(λ1)− (2λ1−
Λ)(T ′

1(λ1)−T
′
2(Λ−λ1)). In order to find a root ofG(λ1) =

0, we can resort to root-finding algorithms. One possible
numerical method is the bisection method with logarithmic
complexity [19]. Then, the valueλnc

2 is easily obtained by
using the equationλnc

1 + λnc
2 = Λ. Using the first equality

constraints of (30) and (31), we obtain the Nash equilibrium
admission prices(pnc

1 , pnc
2 ) =

(

R−CT1(λnc
1 ),R−CT2(λnc

2 )
)

.
Note that given the admission pricep1, from (33), the best

response of BSo2 can be expressed in terms of the arrival rate
variableλ2 as

max
λ2

λ2
(

p1+CT1(Λ−λ2)−CT2(λ2)
)

(39)

s.t. 0≤ λ1 ≤
1

E[Y1](1+β1E[X1])
.
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TABLE I
EQUILIBRIUM ARRIVAL RATE IN SIX SCENARIOS: (I ) β = 2, µY = 1.2AND

µX = 0.5; (II ) β = 2, µY = 1.2AND µX = 0.6; (III ) β = 1.5, µY = 1.2AND µX
= 0.5; (IV ) β = 1.5, µY = 1.2AND µX = 0.6; (V) β = 3, µY = 1.2AND µX =

0.6; (VI ) β = 3, µY = 1.2AND µX = 0.5;C= 1. THE FIRST CHANNEL

FOLLOWS THEEXPERL CASE AND THE SECOND CHANNEL FOLLOWS THE

EXP CASE.

Scenario Total ar-
rival rate
Λ

Equilibrium
arrival rate
(λnc

2 ,λnc
1 )

The product
revenue
π1(λ1)π2(λ2)

(i) 0.120 (0.053,0.067);
(0.042,0.078);

27.42;
24.06

(ii) 0.138 (0.064,0.074);
(0.043,0.095)

38.4;
30.7

(iii) 0.150 (0.070,0.080);
(0.046,0.104)

45.7;
35.8

(iv) 0.171 (0.081,0.090);
(0.047,0.124)

61.7;
45.0

(v) 0.100 no existence no existence
(vi) 0.083 no existence no existence

Solving the above problem, we obtain the best response arrival
rateλB

2(p1) of the BSo2 . From the first constraint of (33), the
best response admission pricep2 corresponding to a given
price p1 is obtained as follows

pB
2(p1) = p1+CT1

(

Λ−λB
2(p1)

)

−CT2
(

λB
2(p1)

)

. (40)

Similarly, given a pricep2, the best response price of BSo
1 is

obtained as follows

pB
1(p2) = p2+CT2

(

Λ−λB
1(p2)

)

−CT1
(

λB
1(p2)

)

. (41)

The Nash equilibrium points can be found by identifying the
intersection points of the reaction curve of both BSos. We can
draw the best response price of the BSo

1 as a function of the
price p2. Similarly, we can draw the best response price of
the BSo2 . When a solution of (38) does exist, the two reaction
curves have an intersection point that is an equilibrium point.
However, the solution of (38) may be neither unique nor even
exists. Therefore, it may lead to a multiple Nash equilibrium
points scenario or a non-convergent oscillation scenario.By
comparing the product revenue between multiple Nash equlib-
rium points, the BSos would choose the most efficient price
equilibrium.

We clarify the equilibrium analysis in the non-cooperative
game through numerical results by the following six scenarios.
As can be seen in Table I, the equilibrium does not exist for the
two scenarios (v) and (vi) because the roots of (38) are non-
real or non-positive. There are two equilibria for four scenarios
(i), (ii), (iii) and (iv) with different product revenue values
π1(λ2)π2(λ2). In the next subsection, we will discuss the
duopoly in the cooperative game, which has a unique solution
and can be solved in a distributed manner. By comparing
the product revenue valueπ1(λ2)π2(λ2), we will show the
advantages of the cooperative model.

C. Duopoly Market: Cooperative Model

In this subsection, we assume that BSo
1 and BSo2 are not

competitive but cooperative through bargaining. Bargaining
theory is categorized in cooperative game theory [20], [21],
[22]. Here, we will find a Nash bargaining solution of the
cooperative game between BSo

1 and BSo2 .

1) Nash Bargaining Solution:A bargaining game is defined
as a situation in which two (or more) players can mutually
benefit from reaching a certain agreement but have conflicting
interests in their the agreement. Therefore, we can model this
case as the bargaining game between BSo

1 and BSo2 who share
the SUs’ customer market. We again assume the utility func-
tions of BSo1 and BSo2 areπ1(λ1) = λ1p1 = λ1

[

R−CT1(λ1)
]

andπ2(λ2) = λ2p2 = λ2
[

R−CT2(λ2)
]

. Then, mathematically,
the bargaining problem can be formulated as follows

max
λ1,λ2

[π1(λ1)−d1]
w1 [π2(λ2)−d2]

w2 , (42)

s.t. 0≤ λ1 ≤
1

E[Y1](1+β1E[X1])
,

0≤ λ2 ≤
1

E[Y2](1+β2E[X2])
,

0≤ λ1+λ2 ≤ Λ,

where the pair(d1,d2) is the disagreement point that is the
outcome if two BSoi ’s fail to reach an agreement [22],(w1,
w2) are constant and denote the bargaining power of BSo

1 and
BSo

2 , respectively.
2) The Dual Decomposition Algorithm:The Nash bargain-

ing solution of the cooperative game can be solved in a
distributed manner by using the dual decomposition algorithm
as follows. In order to decompose problem (42), we rewrite
problem (42) as follows

max
λ1,λ2

w1 log(π1(λ1)−d1)+w2 log(π2(λ2)−d2), (43)

s.t. 0≤ λ1 ≤
1

E[Y1](1+β1E[X1])
,

0≤ λ2 ≤
1

E[Y2](1+β2E[X2])
,

0≤ λ1+λ2 ≤ Λ.

Both π1(λ1) and π2(λ2) are strictly concave functions since
T1(λ1) andT2(λ2) are convex and strictly increasing continu-
ous functions. Then, problem (43) is convex. We can solve
problem (43) in the distributed manner by using the dual
decomposition algorithms [23], [24], [25] and [26]. We first
form the Lagrangian function as follows

L(λ1,λ2,ν)
= w1 log(π1(λ1)−d1)+w2 log(π2(λ2)−d2)

−ν(λ1+λ2−Λ),
= [w1 log(π1(λ1)−d1)−νλ1]

+ [w2 log(π2(λ2)−d2)−νλ2]+νΛ, (44)

where ν ≥ 0 is the Lagrange multiplier associated with the
inequality constraintλ1+λ2 ≤ Λ. We want to maximize the
L(·) function from which we can decompose it into two
different problems, presented as follows

max
λi

wi log(πi(λi)−di)−νλi (45)

s.t. 0≤ λi ≤
1

E[Yi ](1+βiE[Xi ])
, i = 1,2,

which has unique solutionλ∗
i (ν) for given ν due to the strict

concavity of log(πi(λi)−di).
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The dual function is given as

g(ν) =[log(π1(λ∗
1)−d1)−νλ∗

1]+ [log(π2(λ∗
2−d2))−νλ∗

2]
(46)

+νΛ.

The master dual problem is

min
ν≥0

g(ν). (47)

Using the gradient method, the Lagrange multiplierν is
updated as follows

ν(t +1) = [ν(t)−α(Λ−λ∗
1(t)−λ∗

2(t))]
+ , (48)

where t is the iteration index,α > 0 is a sufficiently small
positive step-size and[·]+ denotes the projection onto the
nonnegative orthant. The dual variableν(t) will converge
to the dual optimalν∗ as t → ∞ since the duality gap for
the problem (43) is zero and the solution to (45) is unique;
the primal variableλ∗

i (t) obtained by solving (45) will also
converge to the primal optimal valueλco

i . Finally, we have the
dual algorithm to determine the optimal arrival rate (λco

1 ,λco
2 )

of problem (43) in Algorithm 1. Since problem (43) is convex
and the Slater’s condition is satisfied, the optimal dualitygap
is zero [27]. Thus, the solution (λ∗

1(t), λ∗
2(t)) will converge

to the optimal solution (λco
1 ,λco

2 ). Then, the equilibrium prices
are (pco

1 , pco
2 ) =

(

R−CT1(λco
1 ),R−CT2(λco

2 )
)

.

Algorithm 1 Dual Algorithms to find the Nash bargaining
solution

• Parameters: each BSo
i (i = 1,2) can estimate the param-

eters of the utility functionπi(·) and the SU customer
arrival rateΛ based on existing estimation methods [17];

• Initialize t = 0 andν(0) equals to a certain nonnegative
value;

1) Each BSoi (i = 1,2) locally solves its problem by com-
puting (45) and then broadcasts the solutionλ∗

i (t);
2) Each BSoi (i = 1,2) updates the Lagrange multiplier

ν(t +1) with the gradient iterate (48);
3) Sett+1→ t and go back to step 1 (until satisfying the

termination criterion);

3) Numerical Results:In order to compare the numerical
results with the non-cooperative model, we use six scenarios
(i), (ii), (iii), (iv), (v) and (vi) as shown in Table I in the
duopoly market in the non-cooperative model section. Fig. 8(a)
presents the convergence of the SU customers’ equilibrium
arrival rate λ∗

1(t) which is updated according to the dual
algorithms. With all six scenarios mentioned in the previous
section, we obtain six equilibrium arrival rates (λco

1 ,λco
2 ) as

(0.056,0.064), (0.065,0.073), (0.071,0.079), (0.082, 0.089),
(0.046,0.054), (0.039,0.044), respectively. With the appropri-
ate step sizeα, the dual algorithm converges quickly to the
optimal value as shown in Fig. 8(a).

In order to show the advantage of the cooperative model,
we compare the bargaining product revenueπ1(λ1)π2(λ2)
between the two models: the non-cooperative and cooperative
model in four scenarios. Since the equilibrium does not exist in
the two scenarios of (v) and (vi) in the non-cooperative model.
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Fig. 9. The convergence of the equilibrium arrival rate withfour BSo
i with

di = 0, wi = 1 (i = 1,2,3,4), Λ = 0.2, R= 100 andC = 1: (1) BSo
1 with the

ExpErl channel,β = 2, µY = 1.2 andµX = 0.5; (2) BSo2 with the Exp channel,
β = 2, µY = 1.2 andµX = 0.5; (3) BSo3 with the Erl channel,β = 2, µY = 1.2,
µX = 0.5; (4) BSo4 with the Exp channel,β = 1.5, µY = 1.5 andµX = 0.2.

Fig. 8(b) shows that the product revenue of the cooperative
model is always higher than the product revenue of the non-
cooperative model in four of the scenarios.

4) Multiple Base Stations Scenario:The price setting
problem can also be analyzed when several BSos, each of
which operate in a different PU band, are available. The
SU customer’s decision in this case is joining to one of the
BSos based on the estimated delay and the admission prices.
Suppose that there areN (N> 2) BSo

i (i = 1, . . . ,N) in the SU
markets, then the duopoly market can be extended to consist
of multiple BSo

i . The bargaining game betweenN BSo
i can

be formulated as

max
λi

N

∏
i=1

[πi(λi)−di]
wi (49)

s.t. 0≤ λi ≤
1

E[Yi ](1+β1E[Xi])
, i = 1, . . . ,N,

0≤ ∑N
i=1 λi ≤ Λ.

By using the dual decomposition algorithm, we can obtain
the equilibrium arrival rate of the above problem. Therefore,
by using the bargaining game theory, we can easily extend
the duopoly scenario to multiple BSos. Furthermore, the
advantages of bargaining game is that it can be solved in a
distributed manner, which helps the policy maker design a
good model to optimize resource allocation. We demonstrate
the multiple BSos by an example with four channels. Fig. 9
shows the quick convergence of the equilibrium arrival rate
obtained by the dual decomposition algorithms and demon-
strates that the cooperative model can be applied for not only
the duopoly model but also for multiple BSs scenarios.

VI. D UOPOLY IN MIXED O-DSA AND D-DSA MARKET

MODEL

We consider a cognitive radio system in which there is one
D-DSA base station denoted by BSd and one BSo. The BSd

can rent a licensed dedicated band for a certain cost. Given
the total arrival rateΛ, SU customers choose to join the queue
of the BSo with an admission pricepo or join the queue of
the BSd with an admission pricepd as illustrated in Fig. 10.
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Fig. 8. Numerical parameters:d1 = d2 = 0 andw1 = w2 = 1 in six scenarios (i), (ii), (iii), (iv), (v) and (vi).
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Fig. 10. Duopoly market in mixed O-DSA and D-DSA model.

Given the pricespo and pd, SU customers will individually
determine a strategyqo of the probability that SU customers
decide to join the BSo queue (thus, with probabilityqd =

1− qo SU customers acquire the BSd). The expected cost
when acquiring the BSd is given by

Cθ−1(pd)+ pd, (50)

whereθ−1(pd) and pd are the expected queueing delay and
the admission fee of the BSd. Thus, given the equilibrium SU
customer arrival rateλo = qoΛ at the BSo, the total cost of an
SU customer who chooses the BSo is given by

po+CT(λo). (51)

At the equilibrium point, the cost of the BSo is equal to the
cost of the BSd. Therefore,λo can be obtained by solving the
equilibrium equation

Cθ−1(pd)+ pd = po+CT(λo). (52)

To avoid a trivial solution in equality constraint (52), we
assume that there exists a set of prices[pl

d, p
u
d] ∈ [0,Pmax]

such thatpd+Cθ−1(pd)>CT(0),∀pd ∈ [pl
d, p

u
d]. The revenue

obtained by the BSd is defined as follows

πd , λdpd, (53)

whereλd = qdΛ is the equilibrium SU customer arrival rate at
the BSd. Similarly, the revenue obtained by the BSo is given
by

πo , λopo. (54)

We organize this section into three subsections. The first
one analyzes the non-cooperative model between the BSo

and the BSd by using the Stackelberg competition in the
duopoly model. In the second subsection, we investigate the
cooperative behavior between the BSo and BSd, and solve the
bargaining problem by the dual composition algorithm. The
numerical results are shown in the third subsection.

A. Non-cooperative Model

We now investigate the non-cooperative model in which
the BSd and BSo selfishly maximize their own revenues. In
order to compete with each other, the BSo sets the pricepo

to maximize its own revenue given the pricepd of the BSd,
and vice versa. Specifically, we model the strategic interaction
between the BSd and BSo as a Stackelberg competition in the
duopoly market [28], [29]. Here, the expected queueing delay
for SU customer accessing the BSo depends on the quality
of the PU’s channel (i.e., pdffY(y) and β). However, the
BSd owns the license and possibly decides to decrease the
expected queueing delay 1/θ by acquiring more bandwidth
to serve SU customers. Hence, the BSd can be a dominant
provider by keeping the price and expected queueing delay
of SU customers sufficiently small. Thus, we assume that the
BSd is the game leader and the BSo is the game follower. In
the Stackelberg game, the BSd has the so-called first-move
advantage, which means that the BSd adapts its decisions
to maximize its revenue by anticipating the BSo’s response.
Then, we use backward induction to derive the Stackelberg
equilibrium of the prices, which are denoted by (pS

d, p
S
o), in a

duopoly as follows.

1) Follower BSo’s Revenue Maximization:First, given the
BSd’s admission pricepd, the BSo aims to determine the
optimal SU customer arrival rateλm

o at the BSo and optimal
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price pm
o by solving the following problem:

max
λo,po

λopo (55)

s.t. po = pd +Cθ−1(pd)−CT(λo),

0≤ λo ≤ min{Λ,1/E[Ye]},

0≤ po ≤ Pmax,

wherePmax is the maximum price SU customer may afford.
By replacing po in the first constraint and setting the first
derivative of objective function to zero, we obtain the optimal
arrival rateλm

o as follows

λm
o (pd) = min{

1
E[Ye]

−

√

CE[Y2
e ]Ω′

E[Ye]Ω′
,Λ} (56)

where Ω′ = CE[Y2
e ]+2

(

Cθ−1(pd)+ pd
)

E[Ye]−2CE[Ye]
2.

Then, we obtain the optimal pricepm
o of (55) as follows

pm
o (pd) = pd +Cθ−1(pd)−CT(λm

o ). (57)

2) Leader BSd’s Revenue Maximization:Knowing the
BSo’s best-responseλm

o and pm
o , the BSd determines its

admission pricepd by solving the following problem

max
pd

πd(pd) = pd[Λ−λm
o (pd)] (58)

s.t. 0≤ pd ≤ Pmax.

3) Stackelberg Equilibrium Summary:The maximization
(58) can be solved by finding the root of the first derivation
π′d(pd) = 0. As before, we can use a standard root-finding
algorithm such as the bisection method with logarithmic
complexity [19]. Thus, the BSo’s Stackelberg equilibrium of
admission price is given as

pS
o = pm

o (p
S
d) = pS

d +Cθ−1(pS
d)−CT

(

λm
o (p

S
d)
)

. (59)

B. Cooperative Model

In this subsection, we investigate the cooperative behavior
between the BSo and BSd. We assume that there is a revenue
sharing contract which encourages coordination between the
BSd and BSo. Then, we will see how the cooperation makes
the revenue better off as compared to the case in which they
selfishly maximize their own profits from the social point of
view. We consider the cooperative problem as the following
bargaining problem

max
λo,po,λd,pd

(πd −dd)
wd(πo−do)

wo (60)

s.t. po+CT(λo) = pd +Cθ−1(pd),

λo+λd = Λ,
0≤ λo ≤ min{Λ,1/E[Ye]},

0≤ λd ≤ Λ,
0≤ po, pd ≤ Pmax.

The first constraint of (60) can be expressed
as h(λo, po,λd, pd) = 0 where h(λo, po,λd, pd) =
po + CT(λo) − pd − Cθ−1(pd). Since h(λo, po, pd) is not
affine, then problem (60) is not a convex optimization
problem.

In order to transform the original bargaining problem (60)
into a convex problem, we go through two steps as follows:

Step 1: We setdd = do = 0 and take the logarithm of the
objective function in order to obtain the following objective
function

max wd log(λdpd)+wo log(λopo). (61)

Step 2:We relax the equalityh(λo, po,λd, pd)= 0 in (60) by
a convex inequalityh(λo, po,λd, pd)≤ 0 sinceh(λo, po,λd, pd)
is a jointly convex function. Thus, we have the following
convex problem:

max
λo,po,λd,pd

wd log(λdpd)+wo log(λopo) (62)

s.t. h(λo, po,λd, pd)≤ 0,

λo+λd = Λ,
0≤ λo ≤ min{Λ,1/E[Ye]},

0≤ λd ≤ Λ,
0≤ po, pd ≤ Pmax.

Lemma 2:Problem (60) and the convex problem (62) are
equivalent.

Proof: Sinceh(λo, po,λd, pd) is monotonically increasing
in po, according to [27], we can guarantee that at any optimal
solution (λ∗

o, p
∗
o,λ∗

d, p
∗
d) of the convex problem (62), we have

h(λ∗
o, p

∗
o,λ∗

d, p
∗
d)= 0. It can be proved by using contradiction as

follows. Suppose there is an optimal solution (λ∗
o, p

∗
o,λ∗

d, p
∗
d) of

(62) such thath(λ∗
o, p

∗
o,λ∗

d, p
∗
d)< 0. Sinceh(λo, po,λd, pd) and

the objective function of (61) are monotonically increasing in
po, we can increasepo while staying in the boundary. Thus, by
increasingpo we increase the objective and increase the func-
tion h(·). It contradicts the supposition that h(λ∗

o, p
∗
o,λ∗

d, p
∗
d) is

the maximum value.
Using Lemma 2, we can solve the (nonconvex) problem

(60) by solving the convex problem (62). We then form the
Lagrangian function as

L(λo,λd, po,λd, pd,ν,β)
= wd log(λdpd)+wo log(λopo)

−ν(λo+λd−Λ)−η[po+CT(λo)−Cθ−1(pd)− pd], (63)

whereν, η ≥ 0 are the Lagrange multipliers associated with
an equality and inequality constraints. We take a dual de-
composition approach, and (62) is decomposed into the two
subproblems:

max
λd,pd

wd log(λdpd)−νλd+ηpd+ηCθ−1(pd) (64)

s.t. 0≤ λd ≤ Λ,
0≤ pd ≤ Pmax,

and

max
λo,po

wo log(λopo)−νλo−ηCT(λo)−ηpo (65)

s.t. 0≤ λo ≤ min{Λ,1/E[Ye]},

0≤ po ≤ Pmax.

The optimal solutions (λ∗
d), (p∗d), (λ∗

o) and (p∗o) of (64) and
(65) for a given set of Lagrange multipliersν and β define
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the dual function as follows

g(ν,η) = ν(Λ−λ∗
o−λ∗

d)+η[Cθ−1(p∗d)+ p∗d− p∗o−CT(λ∗
o)]

+wd log(λ∗
dp∗d)+wo log(λ∗

op∗o). (66)

Then, the master dual problem is given as

min
ν,η≥0

g(ν,η) (67)

Since (λ∗
d), (p∗d), (λ∗

o) and (p∗o) in (64) and (65) are unique
due to the strict concavity ofCθ−1(pd) and−T(λo), by using
the gradient method, we can solve the dual problem by the
following updating Lagrangian multipliers:

ν(t +1) = ν(t)−α1(Λ−λ∗
o(t)−λ∗

d(t)), (68)

η(t +1) = [η(t)−α2(Cθ−1(pd)+ p∗d(t)

− p∗o(t)−CT [λ∗
o(t)])]

+, (69)

where t is the iteration index,α1 > 0 and α2 > 0 are suffi-
ciently small positive step-sizes. Then, we have the coopera-
tive dual algorithm that implements the Nash bargaining solu-
tion distributively between the BSo and BSd in Algorithm 2.
As a consequence of the assumptionpu

d+Cθ−1(pu
d)>CT(0),

with sufficient smallϑ, ε and the continuity ofT(·) andθ−1(·),
the point (λo, po,λd, pd) = (ϑ,0,Λ −ϑ, pu

d − ε) satisfies the
Slater’s condition. Since problem (62) is convex, the optimal
duality gap is zero [27]. Thus, the solution (p∗o(t), p∗d(t)) and
(λ∗

o(t), λ∗
d(t)) will converge to the optimal solution.

Algorithm 2 Cooperative dual algorithms

• Input parameters: functionCT(.), θ−1(pd), C and the SU
customer arrival rateΛ;

• Initialize t = 0 andν(0), η(0) equal to some value;

1) BSd locally solves its problem by computing (64); then
sends the solutionλ∗

d(t) and p∗d(t) to BSo;
2) BSo locally solves its problem by computing (65); then

sends the solutionλ∗
o(t) and p∗o(t) to BSd;

3) Both BSo and BSd update the Lagrange multiplierν(t+
1) andβ(t +1) with the gradient iterate (68) and (69);

4) Go back to step 1 (until satisfying the termination
criterion);

C. Numerical results

We supplement the equilibrium analysis through the numer-
ical results by the following four scenarios. Table II shows
the comparison between the noncooperative (NC) model and
cooperative (CO) model. From Table II, the product revenue of
cooperative model is always higher than the product revenue
of the non-cooperative model in four scenarios. Furthermore,
Fig. 11 shows that the revenueπd of the BSd in the cooperative
model is always higher than that in the noncooperative model.
At the equilibrium of cooperative model in Table II, the arrival
rate λd increases in (vii) and (viii) cases, but it decreases in
(ix) and (x) cases. This shows that the change of the arrival
rate from the BSd to the BSo and vice versa does not imply an
increase of the BSs’ revenue. The main reason of the revenue
increase is the rise of the equilibrium price in cooperation. In
other words, the competition keeps the equilibrium price low
which in turn leads to the low revenue of the BSs.
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Fig. 11. The revenueπd comparison between noncooperative model (NC)
and cooperative model (CO).

D. Multiple Base Stations Scenario

The study of the general setting with multipleN BSd andN
BSo, where each BS competes to all others, is very difficult.
However, once additional assumptions are added, it may be
possible to solve for the equilibrium point. We considerN
to be the number of PU bands in the system. By a certain
spectrum allocation mechanism, each PU bandi is assigned
to a BSdi . We assume that there is a BSo

i which only operates
on the PU bandi and competes with the BSdi . The spectrum
allocation mechanism also assigns a group of SU customer
type i who is operating in the spectrum PU bandi. Each BSoi
independently sets the pricepi

o to compete with the BSdi . We
suppose thatN BSds belong to a Primary Operator (PO) and
the PO sets the same admission pricepd for all N BSds. Then
the cooperative or non-cooperative game betweenN BSd

i and
BSo

i can be considered partial separately as in Subsections
VI.B and VI.C.

VII. C ONCLUSION

In this paper, we considered the decision-making process of
SU customers and the optimal pricing of the BS. The impact
of PU’s emergence is modeled as a server with breakdowns.
Explicit expressions for the equilibrium in SU customers’
behaviors are obtained. In the O-DSA model, the BSo’s
pricing strategy for revenue maximization is formulated and
is shown to be a convex optimization problem, which is
solved directly. Then, the unique Nash bargaining solution
for the cooperative duopoly scenarios are obtained by the
decomposition algorithm. In the mixed O-DSA & D-DSA
model, we formulate competitive and cooperative behaviorsof
the BSo and the BSd by Stackelberg and bargain game theory,
respectively. By choosing appropriate bargaining parameters,
we obtain the bargaining solution by the decomposition algo-
rithm. The numerical results not only validate our analysisbut
also present the behaviors of BSs in the duopoly market. In
both models, the cooperation between BSs helps them achieve
higher product revenues. Furthermore, by using the decompo-
sition, the Nash bargaining equilibrium of the admission price
can be obtained in a distributed manner that does not reveal
the BSs information.
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TABLE II
COMPARISON OF NONCOOPERATIVE MODEL(NC) AND COOPERATIVE MODEL(CO) IN FOUR SCENARIOS WITHwd = wo = 1,C = 2, ζ = 10 AND

Pmax= 50: (VII ) EXP CHANNEL, β = 2, µY = 1.2AND µX = 0.5;Λ = 0.15; (VIII ) EXP CHANNEL, β = 1.5, µY = 1.2,µX = 0.5;Λ = 0.2; (IX ) ERL CHANNEL,
β = 2, µY = 1.2,µX = 0.5;Λ = 0.03; (X) ERL CHANNEL, β = 1.5, µY = 1.2,µX = 0.5;Λ = 0.04.

(vii) (viii) (ix) (x)
Equilibrium arrival rate (λd,λo) of NC 0.046, 0.104 0.053, 0.147 0.025, 0.005 0.028, 0.012
Equilibrium arrival rate (λd,λo) of CO 0.083, 0.067 0.109, 0.091 0.010, 0.020 0.024, 0.016
Equilibrium price (pd, po) of NC 26.45, 15.66 28.23, 18.45 29.18, 2.79 25.28, 4.55
Equilibrium price (pd, po) of CO 49.87, 37.25 49.90, 39.21 49.48, 14.92 49.62, 21.06
Product Revenueπdπo of NC 1.97 4.02 0.011 0.039
Product Revenueπdπo of CO 10.36 19.42 0.153 0.414
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