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Abstract—The use of heterogeneous small cell-based net-
works to offload the traffic of existing cellular systems has
recently attracted significant attention. One main challenge is
solving the joint problems of interference mitigation, user asso-
ciation and resource allocation. These problems are formulated
as an optimization which is then analyzed using two different
approaches: Markov approximation and log-linear learning.
However, finding the optimal solutions of both approaches
requires complete information of the whole network which
is not scalable with the network size. Thus, an approach
based on a Markov approximation with a novel Markov
chain design and transition probabilities is proposed. This
approach enables the Markov chain to converge to the bounded
near optimal distribution without complete information. In the
game-theoretic approach, the payoff-based log-linear learning
is used, and it converges in probability to a mixed-strategy
ε–Nash equilibrium. Based on the principles of these two
approaches, a highly randomized self-organizing algorithm is
proposed to reduce the gap between optimal and converged
distributions. Simulation results show that all the proposed
algorithms effectively offload more than 90% of the traffic
from the macrocell base station to small cell base stations.
Moreover, the results also show the the algorithms converge
quickly irrespective of the number of possible configurations.

Index Terms—Heterogeneous Cellular Networks, HetNets,
Interference Mitigation, User Association, Resource Allocation.

I. INTRODUCTION

The demand for wireless data traffic has increased con-
siderably in the past decade and is expected to continue to
grow in the near future. However, mobile operator revenues
are flattening due to saturated markets, flat-rate tariffs and
competitive and regulatory pressure [1]. This decoupling
of network traffic and operator revenue has led the mobile
operators to increase the network efficiency in order to max-
imize their revenue. One viable solution is the deployment
of multi-tier dense small cell base stations (SBSs) overlaid
on the existing macrocells. Economically, deploying and
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operating SBSs cost only a small fraction of the macrocell
base stations (MBSs) in terms of both CAPEX and OPEX.

The major challenges for small cell based heterogeneous
networks (HetNets) are interference mitigation, user asso-
ciation and resource allocation problems [2]–[7]. Unlike
classical wireless networks, in HetNets, the number of
choices or configurations increases exponentially with the
number of deployed SBSs. Thus, existing centralized re-
source management algorithms such as in [8] and [9] can no
longer cope with the massive overhead in computation and
signaling required by the HetNet small cells. This challenge
is further exacerbated by the fact that these problems are
coupled and must be solved simultaneously. This problem
becomes non-trivial when coordination and tradeoff are
necessary between the competing interests of users and
base stations (BSs). To address this problem, one must
design self-organizing algorithms that can enable a small
cell network to operate in a distributed manner and with
small overhead [10]. Using self-organization, small cells
can learn from their environment and autonomously adjust
their configuration strategies towards achieving the optimal
performance. More importantly, self-organizing mechanisms
can be implemented distributedly without complete informa-
tion, and thus, are scalable with the network size [2].

A. Related Work

Many works have recently developed self-organization al-
gorithms for HetNets based on game-theoretic approaches to
analyze user association, resource allocation, power control,
interference mitigation, spectrum reuse, network selection
and/or admission control [2]–[4], [11]–[15]. However, most
of the existing literature focused on one such problem in
isolation without considering them jointly [2], [4], [12], [14],
[15]. Moreover, none of these approaches considered the bal-
ance between the exploration and exploitation of the learning
approaches used in self-organization. In [2], the authors
used the potential game approach to reach a self-organizing
solution for power control. In [11], the authors employed a
semi-Markov decision process to study the admission control
problem and designed a power control game to reduce
energy consumption. The authors in [12], [14] developed
a coalition game approach to tackle interference mitigation
and reached self-organizing solutions that can achieve stable
network partitions. In [13], the authors studied the dynamic
matching game and proposed distributed algorithms for joint
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user association and resource allocation for femto access
points. Similarly, in [15], the authors formulated the resource
allocation problem as a cooperative game which jointly
performs user association and resource allocation such that
the total satisfaction of the users is maximized.

Beyond game theory, the authors in [5] studied the joint
resource allocation and power control problem. They pro-
posed an optimal exhaustive algorithm and its corresponding
sub-optimal distributed low-complexity algorithm. In [6], the
authors focused on resource allocation and inter-cell inter-
ference mitigation and formulated the optimization problem
as a low-complexity linear programming. In [7], the authors
considered a success probability as a QoS constraint and
formulated a throughput maximization problem to find the
optimal spectrum allocation. The authors in [16] explored
up-link scheduling and power allocation problem and used
an approximation method to arrive at a sub-optimal solution.
The work in [17] studied the spectrum and energy efficiency
in HetNets in which the authors quantified the tradeoff
between spectrum and energy efficiency as a Lebesgue
measure. In [18], the authors studied the backhaul as a
bottleneck in HetNets and characterized the behavior of
delay and deployment cost. The work in [19] used learning
for turning BSs on and off, but it does not look at resource
allocation. Although the works in [3], [5]–[7], [11], [13],
[16]–[18] considered joint problems, they did not study the
self-organization and learning aspects which are critical for
future deployment of dense small cell networks. In [20], the
authors modeled the energy efficiency in traffic offloading
of HetNets as a discrete-time Markov decision process and
used Q-learning with compact state representation algorithm
to achieve self-organization. The work in [20] considered
both the joint problems and learning aspects of HetNets,
but did not analyze the learning efficiency and the mixing
characteristics of the underlying Markov chain.

Recently, the use of Markov approximation [21] was
proposed to solve a number of combinatorial optimization
problem. In [21], the authors presented three use cases, (i)
utility maximization in CSMA networks, (ii) path selection
in wire-line networks and (iii) channel assignment in wire-
less LANs. In [22], the authors applied Markov approxi-
mation to search for the optimal peer-to-peer (P2P) network
configuration distributively for video streaming applications.
Furthermore, the Markov approximation was also employed
in [23] for the joint virtual machine placement and routing
in data-centers. However, these existing works do not take
into account the fact that the UEs are only interested in
maximizing their individual utilities whereas the BSs are
concerned with minimizing their total costs which, in a
distributed system, can lead to the detrimental performance
if not properly modeled.

B. Contributions

We formulate traffic offloading as a joint optimization
problem (JOP) of interference mitigation, user association
and resource allocation under QoS guarantee which is
combinatorial and has a very large solution space. The

main goal of this paper is to address JOP by combining
different perspectives from Markov approximation and non-
cooperative game theory. The Markov approximation has its
roots in convex optimization [24]. The drawback of Markov
approximation is that it ignores the strategic behaviors of
UEs and BSs. On the other hand, log-linear learning is used
to find the equilibrium of a noncooperative game [25]. The
advantage of a noncooperative game is that we can model the
competitions and strategic interactions between all the UEs
and BSs. The drawback of the noncooperative game is that
it can reach inefficient equilibrium solutions. However, both
methods share the same approach of using an underlying
Markov chain to yield probabilistic solutions. Based on these
two methods, our contributions are summarized as follows:

• To solve JOP, we first analyze it using Markov approx-
imation. We then design an algorithm, called Markov
chain Directed Algorithm (MIDA), which allows UEs
and BSs to self-configure the network according to
the transition probabilities of the underlying Markov
chain. The self-configuration involves two steps, ex-
ploration in one time slot followed by consolidation
in subsequent time slot. The exploration–consolidation
steps are repeated until MIDA converges to a bounded
near-optimal solution. However, the performance gap of
MIDA is still quite large due to the lack of randomness
in exploration–consolidation steps.

• To overcome some of the drawbacks of MIDA, we
propose a log-linear algorithm to solve JOP. We for-
mulate the problem as a noncooperative game where
UEs and BSs are joint players who self-configure the
network. To solve the formulated game, we design
a distributed algorithm, called Payoff-based log-linear
Learning Algorithm (POLA), which takes into account
the strategic interactions between players and intro-
duces randomness into the algorithmic structure with
a Bernoulli process.

• We decrease the optimality gap between converged
and optimal distributions in POLA via the design
of a highly randomized algorithm called Randomized
Self-organized Algorithm (ROSE). Due to the highly
randomized algorithmic structure, ROSE outperforms
both MIDA and POLA in terms of utility.

• Simulation results show that all of our proposed al-
gorithms can effectively offload the traffic from MBS
to SBSs. The results also show that MIDA and POLA
converge quickly irrespective of the size of feasible so-
lution space of JOP. Furthermore, ROSE yields the best
performance in terms of utility, and at the same time,
have a bounded expected stopping time irrespective of
the number of BSs and UEs in the network.

The rest of the paper is organized as follows: In Section II,
we present our system model. We formulate the problem in
Section III. We present MIDA in Section IV. We formulate
the noncooperative game in Section V and present POLA
and ROSE in Section V-B and Section V-C, respectively.
We present our simulation results in Section VI, and we
finally conclude this paper in Section VII.
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Fig. 1: An example of a three-tier HetNet including one
macrocell BS: {B1}, one picocell BS: {B2}, and ten fem-
tocell BSs: {B4, . . . , B8, B10, . . . , B14}. The picocell and
femtocell BSs are usually located at buildings that constitute
hotspots for wireless traffic. Some buildings have no SBSs
and the UEs located within these buildings will be served
by the MBS. For example, buildings A6 and A9 are served
by the MBS. Furthermore, UEs in an outdoor region, such
as A0, are either served by MBS or SBSs.

II. SYSTEM MODEL

Consider the downlink of a HetNet consisting of fixed BSs
and randomly located UEs as illustrated in Fig. 1. The area
shown in Fig.1 is covered by three-tiers of BSs: macrocell
base station (MBS) tier, picocell base station (PBS) tier, and
femtocell base station (FBS) tier. The coverage area of those
BSs will be overlapping, and each UE is in the range of at
least one BS. The set of BSs is denoted by B. Let S be the
set of available sub-channels that each BS m ∈ B can use.
These sub-channels will be further divided and allocated to
the UEs associated to each BS m. We assume that each BS
m ∈ B transmits with a constant per sub-channel transmit
power P kmi on sub-channel k, and total transmit power of
BS m is P̂m =

∑
k∈S P

k
mi. All BSs are connected to a high

speed backhaul with negligible delay (such as a high speed
fiber). Let U be the set of UEs located inside region A and
ψi ∈ Ψ be the requested downlink rate (bits per second) of
UE i, where Ψ is the discrete set of service classes1.

A. Data Rate and QoS

In this network, we consider a log-distance path loss
model, and the positive channel power gain between UE
i and BS m can be calculated as: hmi = 10−µ/10, where µ
is the total path loss between BS m and UE i in decibels
(dB). We assume that each UE i is capable of measuring
hmi for all BSs m ∈ B. Let Bk ⊆ B denote the set
of BSs that use sub-channel k. Then, the interference to
BS m on sub-channel k is

∑
n∈Bk\{m} hniP

k
ni. Hence, the

1Note that hereinafter we use service classes or QoS levels interchange-
ably.

TABLE I: Table of Notations

Notation Description
U , |U|, i, j set, cardinality and indexes of UEs
B, |B|, m, n set, cardinality and indexes of BSs
S, |S|, k set, cardinality and index of sub-channels (sCHs)
Bconflict, Breuse sets of conflict and reuse BS pairs
µ, hmi path loss and CH gain between BS m and UE i

P kmi, P̂m per sCH and total Tx power of BS m
W , N0 sCH bandwidth and thermal noise spectral power
Γkmi, R

k
mi SINR and data rate of downlink mi on sCH k

ψi, R̂i requested and achieved downlink rates of UE i

Ĉi, Ui(x,y) incurred cost and individual utility of UE i
xmi , x user association decision variable and vector
ykmi, y resource allocation decision variable and vector
U(x,y), Uf utility function (or) sum rate with pricing
f = {x,y} configuration of the network
pf (Uf ), pf probability of configuration in f
q(f→f ′) transition probability from configuration f to f ′

instantaneous signal-to-interference-plus-noise-ratio (SINR)
received at UE i from BS m on sub-channel k is:

Γkmi =
hmi P

k
mi∑

n∈Bk\{m} hni P
k
ni +W N0

, (1)

where W is the bandwidth of the sub-channel and N0 is the
thermal noise spectral power.

Accordingly, the achievable per sub-channel downlink rate
from BS m to UE i is

Rkmi = W log2(1 + Γkmi). (2)

Then, the downlink rate achieved by UE i will be given by:

R̂i =
∑
m∈B x

m
i

∑
k∈S y

k
miR

k
mi, (3)

where xmi ∈ {0, 1} and ykmi ∈ {0, 1} are the binary
decision variables used for user association and sub-channel
(resource) allocation, respectively. In other words, xmi = 1
if UE i is associated with BS m and ykmi = 1 if sub-channel
k is allocated to the downlink from BS m to UE i, and vice
versa. Note that UE i can only associate with at most one
BS at any time instance, i.e.,∑

m∈B x
m
i ≤ 1, ∀i ∈ U . (4)

A BS must serve its associated UEs with a minimum QoS
requirement, i.e., R̂i ≥ ψi, ∀i ∈ U . Hence, the QoS
constraint will be given by:∑

m∈B x
m
i

∑
k∈S y

k
miR

k
mi ≥ ψi, ∀i ∈ U . (5)

To satisfy (5), BS m must allocate minimum number of sub-
channels to UE i. Assuming that Rkmi is the same across
all sub-channels, we have

∑
k∈S y

k
mi =

⌈
ψi/R

k
mi

⌉
, where∑

k∈S y
k
mi represents the total number of allocated sub-

channels, and d·e denotes the ceiling function.
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B. Interference Mitigation via Dynamic Spectrum Partition-
ing

Due to the disparity in the transmit powers,2 the macrocell
base station (MBS) can cause significant interference to
small cell base station (SBS) links. Inter-tier interference
mitigation is the key challenge in HetNets since it involves
mutual interference between an MBS and an SBS. The MBS
link usually overwhelms the SBS link with its interference,
decreasing the SBS link’s SINR. Thus, an SBS link might
need a large number of sub-channels which can be highly
resource consuming. In [26]–[29], the authors proposed
various methods for interference mitigation and spectrum
sharing and reuse. The proposed approaches are diverse in
terms of performance metrics and mechanisms. However,
there is a basic common idea underlying these existing works
which is to isolate (allocate orthogonal resources) high
interfering links. Hence, we isolate the high-interference
links by using orthogonal allocation [26]–[29].

We assume that the locations of BSs are fixed, and we
propose a dynamic spectrum partitioning scheme based on
the notions of a conflict graph and a reuse graph [30]. In
practice, interference measurement and estimation for the
downlink must be made at the UE side. The intuition is
to isolate any two BSs with high-interference links from
each other by spectrum partitioning [26]. Thus, depending
on the interference levels between BS m and BS n, we
define the sets of conflict and reuse BS for sub-channel k
as: ∀k ∈ S, ∀m,n ∈ Bk ⊆ B, ∀i, j ∈ U ,

Bconflict =
{

(m,n) | min{Γkmi,Γknj} ≤ Γ̃
}
, (6)

Breuse =
{

(m,n) | min{Γkmi,Γknj} > Γ̃
}
, (7)

where Γ̃ is the SINR threshold and min{·} is the commonly
used minimum operator such that min {a, b} = a, if a < b
and min {a, b} = b, if a > b. Bconflict represents the set
of BS pairs that conflict with each other due to their high-
interference links. Breuse represents the set of BS pairs that do
not conflict with each other because of their low-interference
links, and thus, they can reuse the same sub-channels. Note
that min{·} is used since the interfering links may not be
symmetric due to disparity in transmit power.

Then, the interference constraints and the resource allo-
cation constraint will be:

ykmi + yknj ≤ 1, ∀(m,n) ∈ Bconflict, ∀k ∈ S, (8)

ykmi + yknj ≤ 2, ∀(m,n) ∈ Breuse, ∀k ∈ S, (9)∑
i∈U

∑
k∈S x

m
i y

k
mi ≤ |S|, ∀m ∈ B. (10)

Here, the constraints in (8) and (9) are used to determine
whether any pair of BSs (m,n) can reuse the same sub-
channel k or not. If (m,n) ∈ Breuse, the sub-channel k can be
reused. On the other hand, if (m,n) ∈ Bconflict, the spectrum
reuse will not be possible. In other words, we identify the
highest interfering BSs to BS m (i.e. its neighboring BSs)
and isolate them by spectrum partitioning. Furthermore, the

2 In practice, the typical transmit power of an MBS is around 43 dBm,
and that of SBSs is 20 ∼ 30 dBm lower than that of the MBS [26].

constraint in (10) ensures that the number of sub-channels
allocated to UEs by BS m does not exceed the total number
of available sub-channels.

Initially, using pilot signals, each BS identifies from which
BSs it receives high or low power interference. (6) identifies
BSs which conflict with one another, and hence, these
BSs cannot be allocated the same resources. (7) identifies
BSs which do not conflict with one another, and hence,
these BSs can be allocated the same resources. Depending
on the UE traffic demand, the resource partition sizes are
changing dynamically with respect to the control variable
ykmi, which will be discussed further in the next section.
Note that the spectrum partitioning resembles a graph multi-
coloring problem [30]–[32] which jointly covers interference
mitigation and resource allocation, where |S|-colors are
assigned to |B| vertices.

III. PROBLEM FORMULATION

Our goal is to design a mechanism that can offload traffic
from the MBS to SBSs under given QoS constraints. Such
an offload must be done in a self-organized fashion. Next,
we consider possible objective functions and formulate the
traffic offloading as an optimization problem.

A. Objective Function

In our system, there are two types of entities with different
perspectives and objectives, namely, UEs and BSs. On the
one hand, each UE wants to achieve maximum data rate
given its QoS requirement. On the other hand, the BSs want
to minimize their operational cost while meeting the QoS
requirement of UEs. Hence, we define the objective function
as the sum rate minus the total operating cost.

Since a major portion of the operational cost is the elec-
tricity bill, we define the operation cost in the downlink as:
Cmi = λm

∑
k∈S y

k
miP

k
mi, where P kmi is the per sub-channel

transmit power of BS m and λm is the unit transmit power
price of BS m, expressed in bits/s/Hz/W. Therefore, each
UE incurs a cost of Ĉi =

∑
m∈B x

m
i Cmi. We consider a

fixed per sub-channel transmission power, P kmi. However,
due to the coupling between the decision variables xmi and
ykmi in (11), the operation cost varies proportionally with the
number of allocated sub-channels to a downlink between BS
m and UE i. Hence, the BSs have an economic incentive
to reduce the number of sub-channels (resources) occupied
which, in turn, will reduce the operating cost. The individual
and network utilities are given by:

Ui(x,y) =
∑
m∈B

xmi
∑
k∈S

ykmi (Rkmi − λm P kmi), (11)

U(x,y) =
∑
i∈U

Ui(x,y). (12)

Note that a UE can be served by either the MBS or an
SBS. On the one hand, the MBS can offer a high SINR
link requiring only a few sub-channels to meet UE’s QoS
requirement. On the other hand, the SBS provides a low
SINR link requiring many sub-channels. Furthermore, low
SINR SBS links can reuse the spectrum efficiently whereas
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high SINR links that use the MBS can impede spectrum
reuse. Thus, there exists a delicate balance between the three
sub-problems: interference mitigation, user association and
resource allocation. Moreover, the tradeoff between the sum
rate R̂i and the operating cost Ĉi reflects the balance among
the three sub-problems. The utilities defined in (11) and
(12) incentivize UEs to choose low power SBSs instead of
the MBS by pricing for higher powers. We remark that the
proposed pricing differs from cell biasing [33], [34] in that
λm is directly coupled with the control variables, and thus,
all the three sub-problems. In contrast, cell biasing considers
a bias factor to only influence user association.

B. Optimization Problem

We define the Joint Optimization Problem (JOP) for of-
floading traffic from MBS to SBSs under QoS provisioning
as follows:

JOP : maximize:
x,y

U(x,y)

subject to: (4), (5), (8), (9), (10).
(13)

The individual elements of x and y can have binary values
(‘0’ or ‘1’), i.e., xmi ∈ {0, 1} and ykmi ∈ {0, 1}. Due to
the unique association constraint given in (4), the number
of possible downlinks (UE associations) is reduced from
2|U|·|B| to |B||U| . However, the number of possible resource
allocations for each downlink is combinatorial, i.e., 2|S|.
Hence, the solution space of JOP is |B||U| · 2|S|, and no
computationally efficient solution for JOP exists. Moreover,
JOP belongs to a class of assignment problems which are
proven to be combinatorial and NP-hard [35], [36].

C. Offloading Procedure

Our objective is to design a UE initiated self-organizing
algorithm for data offload in HetNets. Hence, we let the
UEs decide on the association through control variable xmi
where UE i randomly chooses BS m in its range according
to a discrete uniform distribution. On the BS side, given
the association, we minimize their operating cost through
control variable ykmi. Hence, the computationally complex
aspect of the user association is divided and distributed to
all UEs. Thus, the problem becomes more tractable for the
BSs.

First, every UE i measures the received power from each
BS m within its transmission range by using a pilot signal.
From the measured received signal strength, UE i computes
the minimum number of required sub-channels for its traffic
demand so as to satisfy the QoS constraint in (5).

Then, UE i sends its request to BS m that the UE has
chosen to associate with. The action of each UE i, xi, is
|B|×1 vector. As shown in Fig. 2a, when a given UE i sends
its request to BS n, its corresponding decision variable is
xni = 1. The request contains the required data rate and the
number of sub-channels needed to satisfy its QoS constraint
defined in (5). Note that UE i can send only one request at
any time according to the association constraint in (4).

Subsequently, BS n either accepts or rejects the traffic
request from UE i depending on its available resources,

UE i

BS m

BS n

f




'f
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( ')f fq 

0imx 

1inx 

niy

miy
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x x i m n

mi niy y
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( , )ff U
'( ', )ff U

',f fq

, 'f fq

(b) Corresponding Markov chain.

Fig. 2: Transition rates from configuration f to f ′.

i.e. (8)–(9). The acceptance of a request is indicated by the
allocation of sub-channels in the form of a reply with sub-
channel frequencies to UE i, i.e. yni (size |S|×1) as shown
in Fig. 2a. BS n will simply not reply in the case of a
rejection, i.e. yni be a vector of zeros.

IV. TRAFFIC OFFLOAD VIA MARKOV APPROXIMATION

The optimization problem JOP is combinatorial and NP-
hard as shown in [35], [36]. Thus, we can adopt the
Markov approximation approach to solve JOP because of its
ability to solve multiple sub-problems simultaneously with-
out disjoint step-by-step solutions [21], [22]. Furthermore,
additional control variables can be introduced in the opti-
mization problem without altering the framework to handle
the increased complexity [23]. Markov approximation was
first proposed in [21]. A Markov approximation framework
consists of two steps: log-sum-exp approximation and the
development of problem-specific Markov chains that allow
distributed implementation.

Let f = {x,y} be a network configuration with Ω being
the set of all possible configurations, and F ⊂ Ω be the
set of all feasible configurations that satisfies the constraints
in (4), (5), (8), (9), and (10). For ease of presentation, the
utility in (12) is shortened to Uf = U(x,y) and that in
(13) is likewise shortened to max

f∈F
Uf . Hence, the equivalent

maximum weight independent set (MWIS) problem of JOP
is [21]:

max
f∈F

Uf ⇐⇒
max
p≥0

∑
f∈F pf Uf

s.t.
∑
f∈F pf = 1

(14)

where pf is the probability of choosing configuration f , i.e.,
its weight, and p denotes the vector of weights pf . We can
view pf as the fraction of the time that configuration f is
activated.
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A. Log-sum-exp Approximation

The log-sum-exp function, gβ(U), is convex and the
closed function [21], [24, p. 93]. Thus, the conjugate of
its conjugate g∗β(p) is itself, i.e. gβ(U) = g∗∗β (U) [21], [24,
p. 93]. Following the Markov approximation framework, the
log-sum-exp approximation of max

f∈F
Uf yields

Umax ≈
1

β
log

∑
f∈F

exp(βUf )

 , gβ(U), (15)

where β is a positive constant, U , [Uf , f ∈ F ] and
Umax = max

f∈F
Uf . Let |F| be the cardinality of set F , then

the approximation accuracy is given by [21], [24, p. 72]:

0 ≤ |Umax − gβ(U)| ≤ 1

β
log |F|. (16)

As β → ∞, the approximation gap, 1
β log |F| → 0, and

thus, the approximation becomes exact.
The log-sum-exp approximation in (15) is equivalent to

solving the following optimization problem [21] [24, p. 93],

max
p≥0

∑
f∈F pfUf︸ ︷︷ ︸

MWIS objective

− 1
β

∑
f∈F pf log pf︸ ︷︷ ︸
entropy term

s.t.
∑
f∈F pf = 1.

(17)

By finding the Karush-Kuhn-Tucker (KKT) conditions [24,
p. 243] of the optimization problem given in (17), we obtain
the optimal probability distribution, p∗, which is given by

p∗f (Uf ) =
exp(βUf )∑

f ′∈F exp(βUf ′)
, ∀f ∈ F . (18)

However, (18) requires completeness, i.e. complete informa-
tion on F which can be difficult to find in a practical small
cell network due to the large solution space. Thus, to obtain
F , we must solve the feasibility problem on Ω which is
computationally exhaustive. Moreover, (18) is equivalent to

p∗f (Uf ) =
(∑

f ′∈F exp[β(Uf ′ − Uf )]
)−1

, which considers
the difference in utilities.

B. Markov Chain and Transition Rate

The next step is to design a problem specific Markov
chain. Each state f represents a configuration with its
corresponding stationary distribution p∗f (Uf ) given by (18)
and the set of states F contains all feasible configurations.
As the probability distribution of the Markov chain con-
verges, the configurations will be time-shared according to
p∗f . Hence, according to (18), the configurations with high
utilities will have high probability, and thus, the network
will operate in those configurations most of the time. It
was proven in [21] that for any probability distribution of
the product form p∗f (Uf ) given in (18), there exists at least
one time-reversible ergodic Markov chain whose stationary
distribution is p∗f (Uf ).

Let configurations f, f ′ ∈ F be the states of a time-
reversible ergodic Markov chain with stationary distributions
p∗f (Uf ), (f ∈ F) in (18). Let q(f→f ′) and q(f ′→f) be the

non-negative transition rates from f → f ′ and f ′ → f , re-
spectively. Then, the two following conditions are sufficient
to allow a large degree of freedom in the algorithm design
[21]:
• Any two states are reachable from each other,
• All f, f ′ ∈ F satisfy the balanced equation, (19).

p∗f (Uf ) q(f→f ′) = p∗f ′(Uf ′) q(f ′→f),

exp(βUf ) q(f→f ′) = exp(βUf ′) q(f ′→f).
(19)

The balance equation in (19) is significant because complete
information on all possible configurations, F , is no longer
necessary. Moreover, as long as (19) is satisfied, any q(f→f ′)

and q(f ′→f) values can be used to design an algorithm. In
essence, (19) shifts the problem of finding optimal p∗ into
designing a transition rate that will enable the Markov chain
to converge to p∗. Furthermore, the Markov chain is time-
reversible, and hence, it will converge to p∗ with probability
1. For our design, we consider the following condition:

q(f→f ′) + q(f ′→f) = exp(−τ), (20)

where τ is a positive constant. From (19) and (20), we have

q(f→f ′) = exp(−τ) · (1 + exp[β (Uf − Uf ′)])
−1
, (21)

q(f ′→f) = exp(−τ) · (1 + exp[β (Uf ′ − Uf )])
−1
, (22)

which are logistic functions of utility differences.
Distributed Implementation: Note that (21)–(22) depend

on Uf , which is the global utility given in (12). However,
due to the distributed nature of the network, a UE can
know only its own individual local utility given in (11)
without additional signaling. For notational convenience, let
Ufi = Ui(xi,yi), where xi and yi denote the individual
user association and resource allocation actions of UE i,
respectively. Then, we substitute the individual utilities in
(21)–(22) to obtain

q(fi→f ′
i)

= exp(−τ) ·
(
1 + exp[βi (Ufi − Uf ′

i
)]
)−1

, (23)

q(f ′
i→fi) = exp(−τ) ·

(
1 + exp[βi (Uf ′

i
− Ufi)]

)−1
. (24)

Since we are using local utilities instead of global utilities
for the transition probabilities, the Markov chain converges
to a distribution p̃f (Uf ) instead of p∗f (Uf ) given in (18). The
authors in [22] have proven that the gap between p∗f (Uf ) and
p̃f (Uf ) is bounded. The total variation distance dTV (p∗, p̃)
[37] between p∗f (Uf ) and p̃f (Uf ) is given as:

0 ≤ dTV (p∗, p̃) ≤ 1− exp(−2β δmax), (25)

where dTV (p∗, p̃) , 1
2

∑
f∈F |p∗f − p̃f |, δmax = max

f∈F
δf ,

and Umax = max
f∈F

Uf . Moreover, the optimal gap between

the utilities is bounded as follows:

0 ≤
∣∣∣p∗UT − p̃ UT

∣∣∣ ≤ 2Umax(1− exp(−2β δmax)).

(26)
The detailed analysis is presented in Appendix A.

C. MIDA: Markov Chain Directed Algorithm

The next challenge is to design an effective and eco-
nomical algorithm using (23)–(24). We present the Markov
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chain Directed Algorithm (MIDA) in Alg. 1, which is com-
putationally efficient and can be implemented distributively
MIDA solves (17) in two steps, exploration and consoli-
dation. During the exploration, a UE randomly chooses a
configuration fi ∈ Fi with probability 1/|Fi|, since it does
not know how much utility it will receive in advance. In
the subsequent time slot, the UE performs consolidation in
which it compares the utilities it achieved in two previous
time slots. The utilities are calculated using (11) and the
transition probabilities are calculated using (23)–(24). If
Uf ′

i
> Ufi , then q(fi→f ′

i)
> q(f ′

i→fi), and the configuration
f ′i has a higher probability to be chosen at next time slot
than fi. In this manner, MIDA repeatedly solves (17) and the
solution will eventually converge to (18) due to the property
of the underlying Markov chain.

In actual implementation, MIDA is separated into three
phases as shown in Alg. 1; initialization (Lines 1–4), user
association (Lines 6–14) and resource allocation (Lines 15–
21). In the initialization phase (Lines 1–4), UP denotes a
set of participating UEs, X := [x1, ...,x|U|] (size |B|× |U|)
denotes the matrix of variable xmi , Y := [y1, ...,y|B|]

(size |S| × |B|) denotes the matrix of variable ykmi, U :=
[U1, ..., U|U|]

T (size 1 × |U|) denotes the vector of utilities
achieved by UEs, Υ := [Υ1, ...,Υ|U|] (size N×|U|) denotes
the matrix for convergence analysis, and χi(t) ∈ {0, 1}
denotes the binary variable indicating whether UE i explores
in time slot t. BSs construct the conflict and reuse graphs
in advance for interference mitigation (Line 4).

In the user association phase, if UE i did not explore in
time slot t, it will explore in time slot t+1. Otherwise, it will
consolidate knowledge learned in the previous time slots. In
the exploration (Lines 6–7), UE i randomly chooses a BS
to associate with in time slot t+ 1 and sends an association
request as shown in Fig. 2. In the consolidation (Lines 8–13),
UE i probabilistically compares the utilities achieved in time
slot t and t − 1 using (23)–(24). In the resource allocation
phase (Lines 15–20), BS m processes the received requests
from UEs in a FIFO manner. BS m allocates resources
(sub-channels) to UE i if the constraints in (8), (9), and
(10) are satisfied. In our model, all the BSs will guarantee
that the constraints in (8)–(10) are not violated by storing
and updating the binary resource allocation matrix Y (size
|S| × |B|) where resource vector ym is the m-th column
of Y . Each BS m finds free resources in its own resource
vector and resources vectors of its reuse BSs, i.e., ym and
yn, ∀(m,n) ∈ Breuse.

Convergence of MIDA: The Markov chain design leads
to the concept of convergence in probability. To explain the
concept, we give the following definitions.

Definition 1 (Normalized performance gap). Let U(t) de-
note the utility achieved at time slot t and ε0 denote the
accuracy level. Then, we define the normalized performance
gap between U(t) and Umax as follows:

ε(t) =
|Umax − U(t)|

Umax
. (27)

Definition 2 (Convergence in Probability). U(t) converges

in probability to Umax = max
f∈F

Uf as t→∞, if and only if

lim
t→∞

Pr( ε(t) ≥ ε0 ) = 0.

There are two performance gaps associated with MIDA:
(i) between Umax and p∗UT given in (16), and (ii) between
p∗UT and p̃ UT given in (26). Both performance gaps
are covered by (27). In [38], the authors showed that, by
dynamically assigning β, we can arrive at Umax. Hence,
we use individual dynamic βi for each UE and βi can be
assigned as follows:
• Linear assignment: βi(0) = 0, βstep > 0, and
βi(n+ 1) = βi(n) + βstep,

• Geometric assignment: βi(0) = 1, βstep > 1, and
βi(n+ 1) = βi(n) · βstep.

We choose the geometric assignment for MIDA (Line 11)
since it provides better mixing characteristics for the un-
derlying Markov chain. Furthermore, the stopping rules for
MIDA are designed as follows. The past configurations of
each UE i are stored in Υ (Lines 12–13). If the configuration
of each UE i remains unchanged for N time slots, the UE no
longer participates in the exploration (Lines 22-23). Thus,
MIDA stops when UP becomes an empty set.

Note that, when only one UE in the network changes its
configuration while all other UEs keep their configurations
fixed as shown in Fig. 2, there is no difference between
(21)–(22) and (23)–(24), i.e., if {x,y} → {x′,y′} ≡
{xi,yi} → {x′i,y′i}, then dTV (p∗, p̃) = 0. We refer to
this special case as a singular case in which MIDA has only
the approximation gap between Umax and p∗UT given in
(16). Note that in MIDA, each exploration in time slot t
is subsequently followed by the consolidation in time slot
t+ 1, which will be further discussed in Section V-C.

V. GAME THEORETIC PERSPECTIVE

In this section, we analyze JOP using a noncooperative
game since it enables decision makers to take individual
actions under strategic competition. In particular, the Markov
approximation in Section IV does not take into account the
competition between UEs whose interest is only in maxi-
mizing their own utilities. Further, the BSs are interested
in minimizing the total operating cost. JOP presented in
Section III can be modeled by a noncooperative, strategic
game, defined as follows:

G = ({U × B}, {Xi,Ymi}i∈U,m∈B, {Vmi}i∈U,m∈B) , (28)

where Xi = {x(1)
i , . . . ,x

(|B|)
i }, Ymi = {y(1)

mi, . . . ,y
(2|S|)
mi },

and sizes of vectors xi and yj are (|B| × 1) and (|S| × 1),
respectively. Note that xi and ymi are vectors of control
variables xmi and ykmi, respectively. Furthermore,
• a player is a UE–BS pair (i,m) ∈ {U × B};
• the actions of the joint players are

– UE i chooses BS m and sends request, {Xi}i∈U ;
– BS m either accepts or rejects the request,
{Ymi}m∈B;

• the joint payoff of UE i and BS m is, {Vmi}i∈U,j∈B.
Let l = (m, i) denote the downlink between UE i and

BS m. We further define that l(i) = 1, if UE i ∈ l, and
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Algorithm 1: MIDA

Result: X , Y , U
1: initialization: UP := U , ∀i ∈ UP
2: X := 0, Y := 0, Υ := 0.
3: τ := 0, βi(0) := 1, Ui(x,y) := 0, χi(t) := 0.
4: Construct (6)–(7) from pilot signals.

5: while t ≤ T , UP 6= ∅, UE i ∈ Up do
6: if χi(t) = 0 then
7: xi(t+ 1) is randomly chosen.
8: else
9: Calculate ν := q(f→f ′) using (23)

10: xi(t+ 1) :=

{
xi(t), with prob. ν.
xi(t− 1),with prob. 1− ν.

11: βi(n+ 1) := βi(n) · βstep.
12: Υi(n− 1) := Υi(n), ∀n ∈ {2, ..., N}.
13: Υi(n) := xi(t+ 1).

14: χi(t+ 1) := 1− χi(t).
15: Find ymi in FIFO manner that satisfies (5),(8),(9).
16: if BS m satisfies (10) then
17: Send ymi ≥ 0 to UE i.
18: else
19: Send ymi := 0 to UE i.

20: Calculate Ui(x,y) using (11).
21: Update X , Y , U .
22: if Υi remains the same for N times then
23: UP := UP \ {i}.

l(m) = 1, if BS m ∈ l. Moreover, let fl = (xi,ymi) be
the joint configuration or action of UE i’s request and BS
m’s reply. Let f−l denote the actions of other UEs and their
associated BSs. Thus, for each individual UE–BS downlink
l, the joint payoff function is:

Vl(fl,f−l) = Ui(x,y). (29)

On the one hand, each UE i wants to maximize its data
rate. On the other hand, each BS m wants to minimize its
operating cost. Note that fl ∈ Fl, where Fl is the set of
feasible configurations that downlink l can take, which is
defined by the constraints in (4), (5), (8), (9), and (10).

A. Mixed-strategy and Solution Concept

Mixed-strategy is a solution concept in game theory where
each pure strategy or action is taken probabilistically. For our
case, the network configurations are the actions of the play-
ers which are randomly selected according to the assigned
probability distribution. The mixed-strategy solution can be
used to time-share the network configurations to achieve the
optimal payoff over a long time. Furthermore, the mixed-
strategy corresponds to the probabilistic MWIS solution in
(18).

First, the joint action set of each UE–BS pair l is discrete
with (|B|×|S|) possible actions, i.e. fl ∈ Fl. The probability
that action f̂l ∈ Fl is chosen can be given by

πl(fl,f−l) = lim
T→∞

1

T

T∑
t=1

I{fl=f̂l}, (30)

where I{·} is an indicator function. For notational con-

venience, we use πl = πl(fl,f−l), πl ∈ Πl. Then, the
expected payoff of the mixed-strategy can be calculated as

V̄l(πl,π−l) =
∑
fl∈Fl

πl(fl,f−l) · Vl(fl,f−l). (31)

The notion of a mixed-strategy Nash equilibrium (NE) is
used to solve this game [39].

Definition 3 (Nash Equilibrium). A strategy profile π∗ ∈
Π is a Nash equilibrium (NE) if no unilateral deviation in
strategy by any single player is profitable for that player,
i.e.,

∀l ∈ U × B, πl ∈ Πl : V̄l(π
∗
l ,π

∗
−l) ≥ V̄l(πl,π∗−l).

For any noncooperative game, at least one mixed-strategy
NE always exists [39]. Our goal is to find a Pareto-efficient
NE and design a learning algorithm that will converge to
the NE.

B. POLA: Payoff-based Log-linear Learning Algorithm

We propose a learning algorithm to find a mixed-strategy
NE. There are many learning algorithms that can converge
to the NE [40]. Among those, we choose to explore log-
linear learning because it is similar to Markov approximation
discussed in Section IV.

1) Log-linear learning: Initially, we assume complete-
ness, which means that each UE–BS pair l has complete
information on other UE–BS pairs, i.e., Fl,∀l ∈ U × B.
Furthermore, we assume singularity, i.e. at each time t > 0,
only one UE–BS pair l ∈ U × B is randomly chosen
and allowed to change its configuration whereas all other
UE–BS pairs must repeat their current configuration, i.e.
f−l(t) = f−l(t − 1). This reflects the similar assumption
in Section IV-C. At time t, downlink l employs the strategy
πl ∈ Πl where

πl(fl,f−l) =
exp[βl Vl(fl,f−l)]∑

f ′
l∈Fl

exp[βl Vl(f ′l ,f−l)]
, (32)

for any configuration fl ∈ Fl. As β → ∞, (32) assigns
more weight to actions with higher payoffs [3], [25]. How-
ever, (32) requires complete information on Fl which we
consider as a major drawback. To achieve our goal of a self-
organizing distributed algorithm, we must relax singularity
and completeness assumptions.

2) Payoff-based log-linear learning algorithm: POLA is
an extension of log-linear learning that relaxes the two major
assumptions, i.e. completeness and singularity [3]. POLA is
presented in Alg. 2. POLA is structured similarly to MIDA
and solves G in an iterative manner. We add an independently
and identically distributed (i.i.d.) Bernoulli process with
exploration rate (probability) ω. This simple process adds the
learning phenomenon of exploration versus exploitation into
POLA. In the exploration phase, each UE i chooses either of
the two options for time slot t+1 (Line 7). With probability
ω, UE i experiments by finding new random feasible down-
link configuration fl(t) = fl′(t), l(i) = 1, to execute (i.e.,
exploration). With probability 1−ω, UE i repeats its current
configuration, fl(t) = fl(t−1), l(i) = 1, (i.e., exploitation).
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The consolidation phase follows in a subsequent time slot
for every experimentation where UE i compares the current
utility obtained with the previously achieved utility. UE i
probabilistically chooses the configuration which achieves
the maximum utility using (33). These steps are repeated
until the underlying Markov chain converges to a stationary
distribution, i.e. ε–Nash equilibrium. Due to the addition of
Bernoulli process, POLA has a higher degree of randomness
than that of MIDA which will further be discussed in
Section V-C.

For notational convenience, let Θ0 = Vl(fl(t− 1)) and
Θ1 = Vl′(fl′(t)) where l(i) = 1 and l′(i) = 1. Then, we
design the consolidation rate of UE i as:

ν =
exp[βl Θ0]

exp[βl Θ1] + exp[βl Θ0]
, (33)

= (1 + exp[βl (Θ1 −Θ0)])
−1
, (34)

where fl(t− 1), l(i) = 1, and fl′(t), l′(i) = 1, represent the
configurations of UE i at time (t − 1) and t, respectively.
Note that (33) is a log-linear function of utilities, and thus,
named log-linear learning. However, as βl → ∞, (33)
becomes undefined. Hence, as done in (23)–(24) for MIDA,
we use the logistic function of utility difference (34) in
POLA.

3) Convergence of POLA: We consider a generic nonco-
operative game in which POLA is guaranteed to converge
to an ε–Nash equilibrium of game G as the underlying
Markov chain converges to its stationary distribution. ε–Nash
equilibrium is defined as follows:

Definition 4 (ε–Nash equilibrium). A strategy π̃ ∈Π is an
ε–Nash equilibrium for G if

∀l ∈ U × B, πl ∈ Πl : V̄l(π̃, π̃−l) ≥ V̄l(πl, π̃−l)− ε.

At a given ε–NE, no UE can increase its own average
utility by more than ε by unilaterally deviating from its
current strategy. As ε→ 0, the ε–NE can approach the NE.
The bound for utility improvement ∀l ∈ U ×B obtained by
the unilateral deviation from a given ε–NE is

∀π′l ∈ Πl : V̄l(π
′
l, π̃−l)− V̄l(π̃, π̃−l) ≤

1

βl
log |Fl|. (35)

Hence, π̃ is an ε–NE with ε = max
l∈U×B

1
βl

log |Fl|. As

βl → ∞, ε → 0, and hence, the ε–NE can be made
sufficiently close to the NE by choosing the parameter
βl. This corresponds to the optimality gap of the Markov
approximation given in (16).

Since the game G is finite, the existence of at least one ε–
NE follows from [41, Theorem 1]. However, this result does
not guarantee the uniqueness of the ε–NE, which strongly
depends on the parameter βl. For instance, when βl → 0,
there exists a unique ε–NE since it corresponds to π̃l =
1/|Fl|, ∀l ∈ U × B by (32). Clearly, this ε–NE is unique
and independent of the number of NEs that game G might
have. On the other hand, when βl → ∞, ε → 0. Hence,
the set of ε–NEs becomes identical to the set of NEs by the
definition of ε–NE.

Algorithm 2: POLA
Result: X , Y , U

1: initialization: UP := U , ∀i ∈ UP
2: X := 0, Y := 0, Υ := 0.
3: τ := 0, βi(0) := 1, Ui(x,y) := 0, χi(t) := 0.
4: Construct (6)–(7) from pilot signals.

5: while t ≤ T , UP 6= ∅, UE i ∈ Up do
6: if χi(t) = 0 then

7: xi(t+ 1) :=

{
rand(Xi)with prob. ω.
xi(t), with prob. 1− ω.

8: else
9: Calculate ν using (34).

10: xi(t+ 1) :=

{
xi(t), with prob. ν.
xi(t− 1),with prob. 1− ν.

11: βi(n+ 1) := βi(n) · βstep.
12: Υi(n− 1) := Υi(n), ∀n ∈ {2, ..., N}.
13: Υi(n) := xi(t+ 1).

14: χi(t+ 1) := 1− χi(t).
15: Find ymi in FIFO manner that satisfies (5),(8),(9).
16: if BS m satisfies (10) then
17: Send ymi ≥ 0 to UE i.
18: else
19: Send ymi := 0 to UE i.

20: Calculate Ui(x,y) using (11).
21: Update X , Y , U .
22: if Υi remains the same for N times then
23: UP := UP \ {i}.

C. ROSE: Randomized Self-organizing Algorithm

1) Observations: We analyze MIDA and POLA (Sec-
tion IV–V) and make the following observations.

Assumptions and relaxations: Both MIDA and POLA
have two key initial assumptions;

• Completeness: UEs and BSs have complete knowledge
on the sets of feasible configurations.

• Singularity: at any given time t, only a single downlink
configuration can be changed.

These assumptions yield the softmax functions given in (18)
and (32). Furthermore, relaxation of these assumptions leads
to the transition probabilities given in (23)–(24) and (34).
MIDA and POLA have the same underlying Markov chain,
and hence, convergence is assured with probability one.
The performance bounds are given in (16), (26) and (35),
respectively.

Algorithmic structure: Although MIDA and POLA ap-
pear to share some similar algorithmic structure as shown
in Alg. 1 and Alg. 2, there exists a profound non-intuitive
difference. Fig. 3 shows the renewal cycles [42] of explo-
ration–consolidation phases of MIDA and POLA. As shown
in Fig. 3a, MIDA has a fixed structure for exploration–
consolidation which does not exploit knowledge learned in
the exploration. At any time slot t, all UEs participate in
the perfectly synchronized exploration–consolidation cycles.
Thus, MIDA is a deterministic algorithm with no random-
ness in its algorithmic structure. Due to the synchronized
cycle, all UEs are actively competing against each other
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Fig. 3: Renewal cycles of MIDA, POLA and ROSE for 3 UEs showing their randomness. Exploitation intervals, Zin, are
geometric r.v.’s with exploration rate, ωi, as their parameter.

without exploiting any opportunities or knowledge learned.3

As shown in Fig. 3b, POLA exploits the knowledge
learned during exploration with rate 1 − ω. As described
in Alg. 2, at any time slot t, all UEs will either explore
with probability ω or exploit the learned knowledge with
probability 1 − ω. As shown in Fig. 3b, the introduction
of ω removes the synchronization between UEs, and thus,
some UEs explore while some other UEs repeat their con-
figurations. From the UE population perspective, ω |U| UEs
are actively competing while the other (1− ω) |U| UEs are
exploiting and waiting for opportunities. Hence, POLA is not
deadlocked into a constantly active competition among UEs
as in MIDA. In other words, the introduction of randomness
through ω improves the mixing characteristics of the under-
lying Markov chain, and thus, improves the performance.
However, the rate of exploration versus exploitation is fixed
by the exploration rate ω.

Convergence: In real-life implementation, Umax is not
known in advance. Thus, the stopping times of MIDA and
POLA are hard to control due to the underlying Markov
chain. Furthermore, the performance bound ε(t) is sub-
modular with respect to running time t. In other words, the
running time t increases linearly whereas the performance
bound ε(t) increases logarithmically, i.e., diminishing re-
turns.

2) ROSE: Randomized Self-organizing Algorithm: From
the observations made in Section V-C1, we refer to fol-
lowings as the key determining factors for the learning
algorithm’s performance;
• the randomness of the algorithm, and
• the balance between exploration and exploitation.

Furthermore, these two factors are closely related where
the exploration rate ω determines the balance between
exploration and exploitation. As shown in Fig. 3b, the ex-
ploitation intervals of POLA are independent and identically
distributed (i.i.d.) geometric random variables (r.v.’s) with ω
as their parameter. Fixed ω leads to a static fixed balance
point which does not react well in a dynamically changing
environment. We will take humans as an example. As small
children, we explore all day trying and learning new things.
As we grow older, we explore less because we have more

3 Note that MIDA is a special case of POLA with the exploration rate
ω = 1.

Algorithm 3: ROSE
Result: X , Y , U

1: initialization: UP := U , ∀i ∈ UP
2: X := 0, Y := 0, Υ := 0.
3: τ := 0, βi(0) := 1, Ui(x,y) := 0, χi(t) := 0.
4: Construct (6)–(7) from pilot signals.

5: while t ≤ T , UP 6= ∅, UE i ∈ Up do
6: if χi(t) = 0 then

7: xi(t+ 1) :=

{
rand(Xi)with prob. ωi.

xi(t), with prob. 1− ωi.

8: else
9: Calculate ν using (34)

10: xi(t+ 1) :=

{
xi(t), with prob. ν.
xi(t− 1),with prob. 1− ν.

11: βi(n+ 1) := βi(n) · βstep.
12: Υi(n− 1) := Υi(n).
13: Υi(n) := xi(t+ 1).
14: if Υi(n− 1) := Υi(n) then
15: ωi := max {0, ωi − ωstep}.

16: χi(t+ 1) := 1− χi(t).
17: Find ymi in FIFO manner that satisfies (5),(8),(9).
18: if BS m satisfies (10) then
19: Send ymi ≥ 0 to UE i.
20: else
21: Send ymi := 0 to UE i.

22: Calculate Ui(x,y) using (11).
23: Update X , Y , U .
24: if ωi = 0 then
25: UP := UP \ {i}.

knowledge to exploit on. This shows that the learning rate
of humans is dynamically changing (decreasing) over time.

Thus, we adopt a dynamic exploration probability, ωi, for
each UE i in ROSE. As shown in Fig. 3c, the identical
assumption over time is relaxed, where 0 ≤ ωmin ≤ ωi ≤
ωmax ≤ 1. Hence, for each renewal process of UE i, the
recurrence times {Z(i)

1 , Z
(i)
2 , . . . , Z

(i)
n } are independently

distributed geometric random variables with mean 1−ωi

ωi
and

variance 1−ωi

ω2
i

. There are several ways to choose ωi to make
it dynamic:

• Random: ωi is uniformly chosen from [ωmin, ωmax].
• Non-increasing: ωi(0) = ωmax, ∀i ∈ U , and repeat

– ωi(n+ 1) = max{ωmin, ωi(n)− ωstep}
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until ωi(n) = ωmin.
• Periodic: ωi(0) = ωmax, ∀i ∈ U , and repeat

1) ωi(n+ 1) = max{ωmin, ωi(n)− ωstep}
until ωi(n) = ωmin;

2) ωi(n+ 1) = min{ωmax, ωi(n) + ωstep}
until ωi(n) = ωmax.

We choose the non-increasing ωi for ROSE following the
intuition from the human example, which also fits with our
traffic offloading scenario (Lines 14–15). In practice, when
a UE joins the network initially, the UE has no information,
and thus, must explore for possible configurations. After
some time has passed, the UE will have learned some
knowledge and can exploit it. Thus, the UE can reduce
its exploration probability. Furthermore, when we choose
ωmax = 1 and ωmin = 0, we have a bounded expected
stopping time for ROSE. The details of ROSE are presented
in Alg. 3.

Now, we will analyze and calculate the expected stopping
of ROSE. Let Nω be the number of steps in decrements
of ωi. For each UE i, the expected stopping time can be
calculated as:

E[Ti] = 2 · (Nω + 1) +

Nω∑
t=1

1− ωi
ωi

, i ∈ U , (36)

where Ti follows a negative binomial distribution. Since the
random variables {Z(i)

1 , Z
(i)
2 , ..., Z

(i)
n } are independent, the

variance of Ti can be calculated as:

η2i =

Nω∑
t=1

1− ωi
ω2
i

, i ∈ U . (37)

Moreover, consider all the individual random processes of
UEs with stopping times {T1, T2, ..., T|U|} which are i.i.d.
random variables. Since ROSE will stop only when the last
UE stops the exploration–consolidation sequence, we apply
the superposition of renewal processes [42, Chapter 6]. The
expected stopping time of ROSE can be approximated as:

E[T ] ≈ E[Ti] +
(|U| − 1)(E2[Ti]− η2i )

2 · |U| · E[Ti]
. (38)

In summary, relaxing the identical assumption (i.e. introduc-
ing dynamic ωi) improves the mixing characteristics of the
underlying Markov chain. In other words, the underlying
Markov chain undergoes more thorough mixing by dynam-
ically balancing exploration and exploitation in a shorter
amount of time.

VI. SIMULATION RESULTS AND ANALYSIS

We perform extensive simulations in MATLAB to evalu-
ate our proposed algorithms. For the benchmark, we use the
optimal solution Umax which is computed using the built-
in simulated annealing functions in MATLAB. The major
simulation parameters are given in Table II.

A. Simulation Settings

First, for all our experiments, we assume the BSs to be de-
ployed at fixed locations. Second, we randomly deploy UEs

TABLE II: Default Simulation Parameters

Quantity Values
Area of region (A) 200 m× 200 m
Static UE population (|U|) 100
UE traffic demand (ψi) [0.1, 1] Mbps
# of BS (|B| = |Bm ∪ Bp ∪ Bf|) 20 = 1 + 2 + 17
Total transmit power of BSs {46, 36, 26} dBm
Antenna gain of BSs (G) {12, 9, 6}dBi
Reference distance of BSs (d0) {1000, 100, 20}m
Transmit antenna height of BSs (ht) {30, 10, 3}m
# of sub-channels (|S|) 12× 100
Bandwidth of each sub-channel (W ) 15 kHz
Thermal noise for 1 Hz at 20 ° C −174 dBm
Unit price of transmit power (λ) 2× 106

following a homogeneous PPP for different experiments.
Third, we consider discrete user demands (i.e. requested data
rate) whose probability mass function (PMF) is a binomial
distribution. In this network, we consider a log-distance path
loss model given by: µ = µ0 + 10 ζ log10

d
d0

+Xg, where µ
is the total path loss in (dB), µ0 is the path loss at reference
distance d0 for the BS, d is the length of transmission path,
ζ is the path loss exponent, and Xg is the attenuation in dB
caused by fading. Moreover, we assume that

• for indoors, d ≤ 20 m, ζ = 3, and Xg is a Gaussian
random variable with zero mean and standard deviation
σ reflecting attenuation caused by shadow fading, and

• for outdoors, d > 20 m, ζ = 4, and Xg is a Rayleigh
random variable for fast fading.

The reference path loss is calculated using two-ray ground
reflection model as:

µ0 = 40 log10(d0)− 10 log10(Gh2th
2
r), (39)

where G is the transmit antenna gain, ht and hr are the
heights of the antenna of transmitter and receiver, respec-
tively.

B. Static Traffic

We first perform experiments for static traffic with a
fixed number of users to validate the theoretical background
and check the performance of our proposed algorithms.
First, we randomly generated |U| = 100 UEs. We then
examine various aspects to evaluate: 1) the log-sum-exp
approximation gap, 2) the convergence of MIDA, POLA and
ROSE, 3) the breakdown of individual BS-tier for ROSE, 4)
the effect of λ on JOP, and 5) the effect of ωstep on ROSE.

1) Log-sum-exp approximation gap: In this experiment,
we validate the log-sum-exp approximation and its perfor-
mance gap given in (16). The exact solution of the log-
sum-exp approximation given in (18) can be obtained from
MIDA by allowing only one UE to change its configuration
in a time slot while other UEs keep their configurations
fixed. The results are shown in Fig. 4 which indicate the
real time utility calculated by (11)–(12) and the normalized
performance gap computed by (27). The results verify that
as β →∞, ε(t)→ 0. However, MIDA requires a relatively
long period of time to converge to p∗ in (18), since only one
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Fig. 4: Log-sum-exp approximation gap in (16) for |U| = 100, N = 50 and λ = 2× 106.

UE is changing its configuration in a time slot. This corrob-
orates our diminishing returns observation in Section V-C1.

2) Convergence: We perform experiments to test the
convergence of the proposed algorithms: MIDA, POLA and
ROSE. In the experiments, we randomly deploy |U| = 100
UEs and set the unit power price, λ = 2× 106. The results
are shown in Figs. 5–6. Figs. 5a–5c show the real-time and
average utility values of MIDA, POLA and ROSE, respec-
tively. The real-time utility values are calculated using (12),
and the time averages of utility values are taken by means
of a sliding window. Figs. 5a–5c show the time average
of utility values slowly converging towards Umax while
the real-time utility values are fluctuating as the network
changes configurations. As shown in Fig. 5a, MIDA has the
highest level of fluctuations. Fig. 5b shows that the utility
of POLA is increasing steadily with low level fluctuations
compared to MIDA. Due to the dynamic learning rate ωi,
ROSE displays characteristics of both MIDA and POLA. As
shown in Fig. 5c, ROSE, initially, displays a high level of
fluctuations, and then, transforms into a steadily increasing
trend with minor fluctuations.

The corresponding normalized performance gaps of
MIDA, POLA and ROSE are calculated using (27) and are
shown in Figs. 5d–5f, respectively. Figs. 5d–5f show that
MIDA, POLA and ROSE converge in probability as defined
in Def. 2. The plots show that, after a relatively short time
period, the ε(t) values go below ε0 fraction of Umax for
ROSE, POLA and MIDA. It also supports the diminishing
returns observation made in Section V-C1. In terms of
convergence in probability, ROSE clearly outperforms both
MIDA and POLA, due to its individual dynamic ωi which
continuously updates the balance between exploration and
exploitation for each UE.

In Fig. 6, we separate the components of the utility into
sum rate and total cost as defined in (11)–(12), i.e., U(t) =
R(t) − C(t). Since the sum rate has a higher priority than
that of total cost, Figs. 6a and 6b are highly correlated. The
priority in the utility is assigned via the unit power price
λ. Fig. 6 shows that, in terms of utility and the achieved
sum rate, UMIDA < UPOLA < UROSE < Umax and RMIDA <
RPOLA < RROSE < Ropt. This supports our claim that the

higher the degree of randomness, the better the performance
of the learning algorithm.

3) Breakdown of individual BS-tiers: In Fig. 7, to observe
the performance of individual BS-tier, we breakdown the
performance of ROSE. We first divide the network utility
into sum rate and total cost, which are our two objectives
calculated by (11)–(12). Fig. 7a shows the achieved sum rate
of the network broken down for each BS-tier, and Fig. 7b
shows the incurred total cost of the network for each BS-
tier. Similarly, Fig. 7c shows the number of associated UEs
for each BS-tier, and Fig. 7d shows the percentage of sub-
channels occupied and reused. From Fig. 7, MBS initially
(t = 0) has the highest number of users corresponding
to the highest achievable sum rate. Moreover, the highest
channel occupancy results in the highest incurred total cost.
As we run Alg. 3, the UEs and BSs start exploration with
probability ωi and exploitation with 1−ωi. As the time goes
on, Fig. 7c shows that more and more UEs are associating
with SBSs. Thus, the corresponding sum rate and total cost
for the MBS are decreasing in Figs. 7a–7b. As more UEs are
offloaded to the SBSs, the SBSs’ data rate overtakes that of
MBS. Similarly, the channel occupancy is also decreasing
in Fig. 7d, since SBSs can reuse more sub-channels. As
the time progresses more and more, UEs have explored all
feasible configurations and stop exploration, i.e. ωi → 0.
Thus, the fluctuations decrease in magnitude, and ROSE
converges.

4) Effect of unit price of transmit power λ: The unit
price of transmit power (λ) is given in (11)–(12). λ can
decide how much traffic is offloaded from MBS to SBSs.
Since all three algorithms solve JOP, we only perform an
experiment to study the effects of λ on ROSE for |U| = 100.
We run ROSE 100 times to take the averages of R(t) and
C(t) at the stopping time. The average sum rates and total
costs are broken down into respective BS-tiers as shown in
Fig. 8. The MBS has the highest per sub-channel transmit
power (P kmi), followed by pico-BSs in the second place, and
femto-BSs have the lowest power. ROSE is maximizing the
sum rate while minimizing the total cost at the same time as
defined in (13). λ represents the weight that decides whether
maximization or minimization is prioritized here. Hence,
depending on the value of λ, ROSE offloads the traffic from
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Fig. 6: Comparison between MIDA, POLA and ROSE, |U| = 100, λ = 2× 106.

high power MBS to low power pico-BSs and femto-BSs.
When λ = 0, the total incurred cost is not considered in
JOP, and MBS tier has the highest sum rate. As we increase
λ value, we can see a dramatic decrease in the sum rate of
MBS-tier while the sum rates of PBS-tier and FBS-tier are
increasing gradually In Fig. 8b, we can see the costs of PBS-
tier and FBS-tier climbing steadily as we increase λ. The
cost of MBS tier initially climbs with increasing λ, but then,
it shows a downward trend as it fluctuates.

5) Impact of ωstep on ROSE: In this experiment, we
vary ωstep to test the stopping time of ROSE. Then, we
run 100 simulations for each point to find the average
number of time slots that ROSE takes to stop and the
normalized performance gap ε(ωstep) at the stopping time.
The theoretical results are obtained using (38). The results
are shown in Fig. 9a where the analytical results and
simulation results well agree, and the stopping times follow
a negative binomial distribution. As shown in Fig. 9b,
ε(ωstep) at the stopping time of ROSE increases with the

increasing step size, ωstep. This indicates that the longer
ROSE takes to stop, the better the mixing characteristics of
the underlying Markov chain and the better the performance.
Thus, a tradeoff exists between the stopping time and the
performance of ROSE. We can sacrifice performance to stop
the algorithm quickly since there is diminishing returns on
performance improvement with respect to the running time
of ROSE. Note that all of the values of ε(ωstep) fall well
below the ε0 of Umax for every value of ωstep. Thus, one
can see that even when using a large step size, the proposed
approach will not yield a performance that is worse than a
fraction ε0 of Umax.

C. Dynamic Traffic

In this section, we randomly generate a network trace in
which the arrival of UE requests (demand) follows a Poisson
process, and the duration of the request is exponentially
distributed. The inter-arrival times between UE demands and
the duration of those demands are exponentially distributed
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Fig. 9: Impact of ωstep on ROSE, |U| = 100 and λ = 2× 106.

with rates ρA and ρD, respectively. We assume that each
time slot is an LTE frame (10 ms). Hence, the probability of
more than one UE demand arriving during a time slot is very
low, and can be assumed to be zero. The design of (23)–(24)
enables ROSE to be implemented in real-time with a few
modifications to the stopping rules. At every demand arrival,
ROSE runs until it converges to a local optimal configuration
for that UE demand. Once it converges to the local optimal
configuration, it will fix the configuration for the UE until its
request duration is finished. When another demand request
arrives, ROSE will repeat the process.

We then run the simulation for 20,000 time slots (equiva-
lent to 200 seconds) to evaluate the performance of MIDA,
POLA and ROSE. We plot the results in Fig. 10 where
Figs. 10a–10c show the real-time trace of the sum rates
achieved, and their corresponding normalized performance
gap, ε(t), values are shown in Figs. 10d–10f. Interestingly,

we can see the sharp spikes of ε(t) values in Figs. 10d–
10f corresponding to departure of a UE in Figs. 10a–10c.
However, we do not see similar spikes for UE arrivals. This
shows that MIDA, POLA and ROSE configure each UE as
it arrives and do not reconfigure the network when a UE
departs. Hence, MIDA, POLA and ROSE can achieve at
most the local optimal configuration for each UE. Fig. 11
shows the cumulative distribution function (CDF) of ε(t)
values for MIDA, POLA and ROSE. Fig. 11 shows that,
in the presence of dynamic traffic, Pr(ε > ε0) is within an
acceptable margin. In particular, for ε0 = 0.2, the confidence
level is 95 percent, i.e., Pr(ε > ε0) < 0.05.

VII. CONCLUSIONS

In this paper, we have analyzed the traffic offload problem
from macrocell base stations to small cell base stations
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Fig. 10: Performance of MIDA, POLA and ROSE for dynamic traffic, λ = 2× 106.
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using the Markov approximation and game-theoretic ap-
proaches. We have formulated three joint sub-problems
for user association, resource allocation and interference
mitigation as the maximization of sum rate with pricing. We
have designed a problem specific Markov chain and have
introduced appropriate transition probabilities that ensure
convergence, in probability, to a close-to-optimal solution.
After relaxing the assumptions made in the Markov ap-
proximation framework, we have designed a Markov chain
guided algorithm (MIDA) using which the network can
self-organize to offload traffic from MBS to SBSs. The
designed MIDA has been shown to converge to a bounded
close-to-optimal solution. Furthermore, we have formulated
the problem as a noncooperative game and have designed
a payoff-based log-linear learning algorithm (POLA). The
designed POLA has been shown to converge to an ε–
Nash equilibrium. After analyzing the designs of MIDA and
POLA, we have discovered that the randomness can improve
the mixing characteristics of the underlying Markov chain.
We have then proposed a highly randomized self-organizing
algorithm (ROSE) which can converge to a pure-strategy

mixed strategy. Simulation results verify that MIDA and
POLA converge in probability, ROSE converges in real-time,
and the traffic is offloaded from MBS to SBSs. Simulation
results also prove that more randomized algorithms perform
better than deterministic algorithms. Since ROSE has the
highest degree of randomness, it has the best performance
which concurs with our simulation results. Furthermore,
our proposed approaches have been also shown to further
decrease the total operating costs of the network.
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