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Abstract—In this paper, a game-theoretic framework is proposed
for coordinating resource partitioning and data offloading in LTE-
based HetNets. The goal of this framework is to determine the
amount of radio resources a macrocell should offer to neighboring
small cells (SCs) and the amount of traffic each SC should admit
from the macrocell. A two-stage Stackelberg game is applied to
optimize the strategies of both the macrocell (the leader) and SCs
(the followers). The macrocell’s strategy is shown to be a mixed-
boolean nonlinear program, which is NP-hard. To solve this problem
efficiently, a branch and bound based method is proposed to obtain
the global optimal. We also show that this two-stage game has a
unique Stackelberg equilibrium. Numerical results show that the
proposed framework outperforms the traditional design by 50% in
term of offloaded data. Additionally, reduction of 14% was observed
in term of cost paid by MBS.

Index Terms—4G LTE, heterogeneous hetworks, data offloading,
resource partitioning, game theory.

I. INTRODUCTION

In wireless heterogeneous networks (HetNets), data traffic
of macrocells can be routed or offloaded to small cells (SCs)
such as picocells, femtocells, or WiFi networks [1],[2] for
better radio resource management. Nevertheless, mobile data
offloading should not increase the load at the SCs, especially
given the limited available resources and the small coverage area
of the SCs. Consequently, it is necessary to develop efficient
resource partitioning mechanisms in order to achieve optimal
data offloading.

This data offloading problem in heterogeneous wireless net-
works has recently received great attention [1],[2]. The authors
in [1]-[2] investigated the economics aspect of mobile data
offloading. The work in [1] studies how much economic benefits
can be generated due to delayed WiFi offloading, by modeling
the interaction between a single provider and users based on
a two-stage sequential game. Using different approach, in [2],
the authors introduce an iterative double auction mechanism that
ensures the market where mobile network operators maximize
their offloading benefits and SBSs minimize their offloading
costs.

Meanwhile, there have been recent works on resource parti-
tioning in HetNets [3]-[4]. The works in [3] and [4] consider
joint resource partitioning and user offloading by using almost
blank subframes (ABS) and cell selection bias (CSB). In [3],
the authors solve the coupled problems of resource partitioning
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and user association in LTE HetNets. The proposed algorithm
is developed based on the decomposition-based approach and
subgradient descent-based dual update. The work in [4] derives
the downlink rate distribution over the entire network and pro-
poses an optimal strategy for joint resource partitioning and user
offloading using Stochastic Geometry analysis. In this paper, we
will jointly consider resource partitioning and data offloading
using an incentive based approach.

To address the coordinated resource partitioning and data
offloading problem in HetNets, we introduce a two-stage leader-
followers game in which the macro base station (MBS) plays
the leader role and the small cell base stations (SBSs) act as
followers. In the first stage, the MBS proposes the fraction of
resource (ABSs) that it is willing to sacrifice to each SBS for
offloading its traffic. In the second stage, each SBS determines
how much traffic to be admitted from the MBS corresponding to
the total amount resource offered by the MBS in the first stage.

The main contributions of this paper are:
• A novel incentive based approach is proposed to address

the coordinated resource partitioning (i.e., each SBS has
variable number of orthogonal ABS subframe) and mobile
data offloading (i.e., amount of offloaded data depends upon
small cells admission capability). In this scheme, we develop
a game-theoretic model to design an economic scheme that
incentivizes each individual SBS to admit offloaded traffic for
MBS in a noncooperative fashion and to determine its own
traffic demand for optimizing its total utility.

• In this Stackelberg game, we show that the Stage-I problem
of the MBS is a mixed-boolean nonlinear programming
problem, which is NP-hard. Therefore, to obtain the optimal
solution for Stage-I problem, we develop an algorithm based
on the branch and bound (BnB) method [7], which can solve
the MBS’s problem efficiently. We show that there exists a
unique Stackelberg equilibrium for the proposed game.

• Numerical results show that the proposed scheme outper-
form the fixed enhanced inter-cell interference coordination
(eICIC) scheme by 50% in term of offloaded data. Addition-
ally, reduction of 14% was observed in term of incentive cost
paid by MBS.

II. SYSTEM MODEL

We consider a downlink two-tier HetNet with one MBS and
a set M , {1, 2, ...,M} of SBSs serving their own small cell
user equipments (SUEs). The MBS and all SBSs use the same
frequency bands to transmit data. The MBS has a group of
macro user equipments (MUEs) which are randomly distributed
within the MBS and SBSs’ coverage areas. The MUEs’ location
and traffic may change over time but for simplicity, they are
considered fixed within the considered time period T (e.g., equal
to a number of LTE subframes). Let N , {1, 2, ..., N} be the
set of N MUEs whose traffic could be potentially offloaded to
SBSs. We denote by D , (d0, d1, ..., dN ) as the MUEs’ traffic
demand vector where dn is the demand of MUE n ∈ N , and d0

is the total MBS’s traffic that cannot be offloaded to any SBS,
i.e., those generated by MUEs not in the coverage area of any



SBS. Each SBS has it own coverage range. We assume that the
traffic of an MUE can be offloaded to a particular SBS only
if the MUE is in the coverage area of the corresponding SBS.
Let ξ denote the reciprocal location availability relation between
MUEs and SBSs where ξm,n = 1 indicates that SBS m covers
MUE n; otherwise, ξm,n = 0. Let Sm and Km be the set of all
MUEs within the coverage of SBS m and the set of all users
associated with SBS m, respectively. Let K0 be the set of all
MUEs associated with the MBS.

LTE-based Resource Partitioning. Let αm be the fraction
of ABS which are reserved by the MBS for the SBS m. In
LTE-HetNets, a fixed eICIC pattern could be used, which means
that there is a fixed number of ABSs in a certain number of
subframes, e.g., the MBS can mute in 5, 10, or 15 ABS within
a period of 40 LTE subframes [3]. In this work, orthogonality of
ABSs among SBSs is assumed. Therefore, an SBS can transmit
within its allocated ABSs without intra-tier interference.

We assume that the transmission rate between SBS m and
its associated SUE i is denoted by Cm,i, which depends on
corresponding SUE’s SINR. Thus, if SBS m is allocated αm
fraction from ABSs then the fraction resource which MBS offers
to SBS m is αm =

∑
i∈Km∪Sm αm,i where αm,i denotes the

resource allocated to user i associated with SBC m. We assume
that transmit powers of SBSs are fixed over the ABS time period
and hence the rate Cm,i, ∀m, i, for data transmission and data
offloading are constant during each resource partitioning period.

Data Offloading. Let ltotm denote the total traffic demand of all
MUEs associated with SBS m (i.e., MUEs in set Sm). We have
ltotm =

∑
i∈Sm di, where di is the traffic demand of MUE i ∈ Sm.

SBS m can offload an amount of traffic
∑
i∈Sm lm,i ≤ ltotm . Let

xm,i denote the SBS m’s own traffic demand. The maximum
amount of data that it can serve within the time period T is:∑

i∈Km

xm,i
Cm,i

+
∑
i∈Sm

lm,i
Cm,i

≤ αmT. (1)

The data rate between MBS and its associated the MUE i
in the considered period T is given by C0,i and total resource
for MUEs

∑
i∈K0∪{Sm} α0,i = (1 −

∑
m αm). We assume that

each MUE is allocated an equal fraction resource α0,i = (1 −∑
m αm)/|K|, where K , K0 ∪{Sm},∀m. Hence, the effective

amount of data that the MBS can serve must satisfy

d0,i

C0,i
≤ (1−

∑
m∈M

αm)T/|K|,∀i ∈ K0, (2)

di − lm,i
C0,i

≤ (1−
∑
m∈M

αm)T/|K|,∀i ∈ Sm,∀m. (3)

Without loss of generality, we normalize the time duration to
be T = 1. Each SBS must select its own strategy to optimize its
utility considering its own traffic demand and offloaded traffic.
On the other hand, based on the knowledge on behavior of SBSs,
the MBS determines the amount of resource it must sacrifice and
economic incentive in order to optimize its total profit.

III. INCENTIVE MECHANISM FOR DATA OFFLOADING

In this section, we consider the economic incentive aspect for
SBSs to admit macrocell traffic.

A. Data Offloading: A Two-stage Stackelberg Game Approach
To offload traffic from heavily loaded MBS, it is necessary

to design an efficient economic scheme that incentivizes each
individual SBS to admit the offloaded traffic. This incentive
issue is particularly important for scenarios in which SBSs suffer
from both inter-tier and intra-tier interferences. The inter-tier

interference can be mitigated using an ABS format for the
subframes (LTE eICIC standard). In particular, each SBS m
needs a fraction of resource αm for transmission in order to
mitigate inter-cell interference. Each SBS m must also determine
its own demand traffic (xm,i) as well as the offloaded traffic
volume (lm,i) it can admit in order to optimize its utility. We
focus on the pricing incentives that the MBS needs to provide
to SBSs in order to encourage cooperative data offloading. The
challenge of the MBS is how to design a differentiated incentive
scheme for heterogeneous SBSs whose own traffic, data rates,
and QoS can be different.

The interactions between the MBS and SBSs can be character-
ized as a two-stage Stackelberg game model. The MBS publishes
the resource partitioning scheme in a first stage and then the
SBSs respond the admitted traffic amount in a second stage. All
SBSs want to maximize their total utilities by optimizing the
amount of offloaded traffic that they can admit according to the
resource partitioning scheme. The MBS wants to maximize its
utility by setting the right resource partitioning scheme to satisfy
the admission abilities of SBSs. Next, we discuss in details the
strategies and modelling of SBSs and MBS respectively.

B. Stage II: Followers Game - SBS Modeling

The strategy of each SBS m is to optimize its own traffic and
the amount of offloaded traffic in order to maximize the total util-
ity under the given fraction of resource and incentive proposed
by the MBS. For the non-uniform economics incentive scheme,
the MBS sets different economics incentives for different SBSs
to encourage SBSs to offload traffic for MBS. We denote the
economic incentive for SBS m as βm. The revenue function and
optimization problem of SBS m are given as follows:

PSBS : max.
xm,lm≥0

Pm(xm, lm, αm, βm) = αm log(
∑
i∈Km

xm,i

+
∑
i∈Sm

lm,i)− αm
∑
i∈Sm

l2m,i + βm
∑
i∈Sm

lm,i,

s.t.
∑
i∈Km

xm,i
Cm,i

+
∑
i∈Sm

lm,i
Cm,i

≤ αm,

xm,i ≥ xminm,i , ∀i ∈ Km,∑
i∈Sm

lm,i ≤ ltotm ,

(4)
where xminm,i ≤ Cm,i, ∀i ∈ Km is the minimum traffic demand
(QoS) required by SBS m’s users. The choice of the first term of
this objective function is motivated by its concave characteristic
which reflects its diminishing return property with the total
transmission rate of the SBS m. For tractability we choose a
quadratic function to model the convex cost (second term) [2],
which can be interpreted as the energy consumption of SBS m
for servicing the offloaded data lm,i,∀i. In addition, we use a
linear economic incentive function (the third term) which means
serving an additional offloaded traffic unit results in an additional
βm unit of monetary or economic incentive. Since the objective
function is strictly concave and the constraint set is compact and
convex, there exists a unique solution (x∗m, l

∗
m),∀m, for given

αm and βm in Stage-II.

C. Stage I: Leader Game - MBS Modeling

The profit of MBS is given by the following revenue function:

PM (α,β, l) = UM (d0+
∑
m∈M

(ltotm −
∑
i∈Sm

lm,i))−
∑
m∈M

∑
i∈Sm

βmlm,i,

(5)



where UM (·) represents the utility for serving remaining traffic
d0+

∑
m∈M(ltotm −lm) using (1−

∑
m∈M αm) of the subframes.

Even though we use a general form of the utility function,
naturally, a function that is chosen arbitrarily may not lead to an
equilibrium. Therefore, utility functions with well-defined prop-
erties must be chosen in order to achieve an unique equilibrium,
e.g., a logarithmic utility or linear utility. The second term of (5)
represents the cost MBS will pay for SBSs. The optimization
problem for MBS can be formulated as

PMBS :max.
α,β

PM (α,β, l)

s.t. 0 ≤
∑
m∈M

αm ≤ 1− δ, ∀m ∈M,

βmin ≤ βm ≤ βmax, ∀m ∈M,

d0,i

C0,i
≤ (1−

∑
m∈M

αm)/|K|,∀i ∈ K0

di − lm,i
C0,i

≤ (1−
∑
m∈M

αm)/|K|,∀i ∈ Sm,∀m

(6)

where δ is a fixed threshold. In LTE-HetNets, with fixed eICIC
pattern, the MBS could sacrifice up to 37.5% of its resource
to small cells [3]. However, the fixed number of ABS usually
leads to poor performance of network as shown in [3]. In our
simulation mentioned in Section V, we set δ = 0.1 in order to
investigate the variation in optimal fraction of resource α.

IV. TWO-STAGE STACKELBERG GAME: EQUILIBRIUM AND
ALGORITHM

The objective of the proposed Stackelberg game is to find the
Stackelberg equilibrium (SE), in which both MBS and APs have
no incentive to deviate. Since the strategy of one stage will affect
the other stage’s strategy, we employ the backward induction
method to analyze it.

A. Stackelberg equilibrium

Denoting a solution to the MBS’s profit maximization by
(α∗,β∗), we have the following definition

Definition 1. (α∗,β∗, l∗,x∗) is a SE for the proposed game if
it satisfies the following conditions for any values of (α,β, l,x)

PM (α∗,β∗, l∗) ≥ PM (α,β, l∗),∀αm, βm,
Pm(x∗m, l

∗
m, α

∗
m, β

∗
m) ≥ Pm(xm, lm, α

∗
m, β

∗
m),∀xm,i, lm,i.

(7)
For the proposed game in this paper, the SE can be ob-

tained as follow: the Stage-II problem is first solved to obtain
(x∗m, l

∗
m),∀m, which is then used to solve the Stage-I problem

to obtain (α∗,β∗).

B. Optimal Solution at Stage II:

The Lagrangian of the SBS m problem (4) can be written as

L(xm, lm, ν, η,λ, ζ) = αm log(
∑
i∈Km

xm,i +
∑
i∈Sm

lm,i)

− αm
∑
i∈Sm

l2m,i + βm
∑
i∈Sm

lm,i − ν(
∑
i∈Km

xm,i
Cm,i

+
∑
i∈Sm

lm,i
Cm,i

− αm)

+
∑
i∈Km

λi(xm,i − xminm,i )− η(
∑
i∈Sm

lm,i − ltotm ) +
∑
i∈Sm

ζilm,i,

(8)
where ν, η, λ, and ζ are the nonnegative Lagrange multipliers
associated with the constraints. By using KKT conditions [6],
we have the following result.

Algorithm 1 Branch and Bound Method
1: input: ε > 0
2: initialize: k = 0; Q = {Qinit}; L0 = Φlb(Qinit); U0 = Φub(Qinit);
3: repeat
4: k ← k + 1;
5: Qk = {Q ∈ Q|m = argmin(|z∗m − 1/2|)};
6: Q(0)

k = {α,β, z|zm = 0}; Q(1)
k = {α,β, z|zm = 1};

7: Q = {Q \ Qk} ∪ {Q(0)
k ,Q(1)

k };
8: for Q(i)

k , i ∈ {0, 1} do
9: Calculate Φlb(Q(i)

k ) and Φub(Q(i)
k );

10: Uk = min(Uk,Φub(Q(i)
k ), i = 0, 1);

11: Lk = min(Lk,Φlb(Q(i)
k ), i = 0, 1);

12: Q(pru) = {Q ∈ Q|Φlb(Q) ≥ Uk)};
13: Q = {Q \ Q(pru)};
14: until Uk − Lk ≤ ε;

Theorem 1. If a optimal solution exists in Stage-II, then
it is symmetric, i.e., l∗m,i = l∗m,j ,∀i, j ∈ Sm, and x∗m,i =
x∗m,j ,∀i, j ∈ Km,∀m ∈M.

Proof : We can prove this theorem by contradiction similar to
Theorem 4 in [5]. �

Theorem 2. For given αm and βm, the unique optimal solution
for Stage-II is:

l∗m,i =

{
ltotm

|Sm| , if βm ≥ 2αml
tot
m

|Sm| ;
βm

2αm
, if βm <

2αml
tot
m

|Sm| ,
(9)

and

x∗m,i =
αm − l∗m,i

∑
i∈Sm

1
Cm,i∑

i∈Km

1
Cm,i

. (10)

Proof : The proof is omitted here for brevity. �
Remark. It is observed from (9) that l∗m is a piecewise function
of the fraction resource αm and economics incentive βm. If eco-
nomics incentive is higher than a threshold, i.e., 2αml

tot
m /|Sm|,

then SBS m will offload all traffic demand ltotm from MUEs.
Otherwise SBS m will offload a portion of traffic demand from
MUEs. If the economics incentive equals 0 then the SBS does
not admit any traffic demand from MUEs.

C. Optimal Solution at Stage I:
We now characterize the optimal solution of the Stage-I based

on the optimal solution of Stage II. For each SBS m, we
introduce the following indicator variable

zm =

{
1, if lm,i = βm

2αm
, βm <

2αml
tot
m

|Sm| ;

0, otherwise.
(11)

substituting (9) into (6), the MBS problem in Stage-I can be
reformulated as

P
′

MBS :max.
α,β,z

UM (d0 +
∑
m∈M

(ltotm − |Sm|
βm

2αm
)zm)

−
∑
m∈M

βm(ltotm (1− zm) + |Sm|
βm

2αm
zm),

s.t. 0 ≤
∑
m∈M

αm ≤ 1− δ, ∀m ∈M,

βmin ≤ βm ≤ βmax, ∀m ∈M,

d0,i

C0,i
≤ (1−

∑
m∈M

αm)/|K|,∀i ∈ K0

di − βm

2αm

C0,i
≤ (1−

∑
m∈M

αm)/|K|,∀i ∈ Sm,∀m

zm ∈ {0, 1}, ∀m ∈M.
(12)
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Fig. 1: a) Bounds with 5 SBSs, b) Performance comparison

We see that problem (12) is a mixed-boolean programming,
which requires exponential computation efforts to obtain the
optimal solution through the exhaustive search. This motivates
us to propose a practically efficient algorithm in Algorithm 1, to
solve this problem.

We now develop an algorithm based on BnB method [7] to find
the global optimal solution for Stage-I. Let Qinit = {α,β, z} be
the original search space, including all possible combinations of
indicator variable z. The proposed algorithm maintains a set of
subdomains Q = {Qk ⊂ Qinit, k = 1, 2, ...} where k represents
the iteration of the algorithm. For any Qk, consider Φub(·) and
Φlb(·) as the upper and lower bounds. We refer to Φub(Qk) and
Φlb(Qk) as the local upper and local lower bounds, respectively
which correspond to subdomain Qk.

The algorithm starts by relaxing the boolean variable zm i.e.,
0 ≤ zm ≤ 1,∀m ∈M, and solve the relaxed problem to obtain
lower bound L0 = Φlb(Qinit) for the original problem (12).
Then, we round the optimal relaxed variables z∗m to 0 or 1,
∀m ∈ M, and solve (12) again with these fixed values of z∗m
to obtain the upper bound U0 = Φub(Qinit) (line 2). At each
iteration k, we split the search space into two subspaces Q(0)

k

and Q(1)
k by picking Qk ∈ Q such that m = argmin(|z∗m−1/2|),

then update Q by removing Qk (lines 5-7). We then calculate the
lower and upper bounds for each subspace and choose the one
with the smallest lower bound (lines 8-11). Finally, the subspaces
that satisfy Φlb(Q) ≥ Uk are removed, since every point in
such space leads to the performance lower than the current upper
bound (lines 12-13). If Uk − Lk ≤ ε, the algorithm terminates.

Lemma 1. The Algorithm 1 converges to the optimal solution
of Stage-I of the proposed game.

Proof : The proof is similar to the one provided in [7]. �
Remark.
1) Although the worst-case complexity of such a procedure is

exponential, the actual running time could be fast when all
partition variables are integers, which is the case in this paper.

2) At each iteration of our algorithm, we solve the relaxation of
subproblems using interior-point algorithms [6]. However, the
optimal relaxed solution may not be feasible. Then the lower
bound and upper bound are set to be∞. And the subproblem
which is infeasible can be eliminated.

3) The optimal solution of Stage-II and the optimal solution
of Stage-I achieved by Algorithm 1 represent a Stackelberg
equilibrium of the proposed game.

V. NUMERICAL ANALYSIS

We consider a network with varying number of SBSs for
performance evaluation. The MBS’s utility is chosen to be
logarithmic. The MBS’s capacity C0,i is chosen to be uniformly
distributed in [0,2]. The MUEs’ traffic that cannot be offloaded
d0,i is chosen from a uniform distribution over [0,0.5], and the
offloaded traffic demand of MUEs which is randomly located in
a SBS coverage area is uniformly distributed in [0,1]. The SBSs
transmission rate Cm,i is chosen to be uniformly distributed in

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Number of SBSs

T
ot

al
 C

os
t

 

 

BnB

OPT

FIX

(a)

1 2 3 4 5 6 7 8
0

1

2

3

4

Number of SBSs

O
ffl

oa
de

d 
D

at
a

 

 

BnB
OPT
FIX

(b)

Fig. 2: a) Cost for offloading traffic, b) Amount of offloaded data (lm).

[0,1].
Fig. 1a shows the evolution of the global lower and upper

bounds. It can be seen that the globally optimal value is close
to the upper bound for the first iteration (rounded result of the
relaxation of problem (12)); however, it takes 7 more iterations
(in case 5 SBSs) to be sufficiently close to the optimal value.

We compare the performance of Algorithm 1 (BnB) with two
baselines. The first baseline, named OPT, is the optimal solution
of problem (12) which is obtained by using the exhaustive
search. The second baseline, called FIX, employs the fixed eICIC
pattern [3], which represents a simple but inefficient scheme.
It is observed that while Alg. 1 and OPT achieve the same
performance, the scheme FIX is not as efficient as the others.
In Fig. 1b, it is observed that by increasing macrocell load,
our proposal outperforms the FIX scheme by up to 50% in
terms of the offloaded traffic when the offloaded data reach the
maximum value. This performance gain is observed because of
the limitation of ABS of FIX scheme. In Fig. 2a, it can be
seen that our proposed approach outperforms the FIX scheme
by achieving 14% lower average cost for offloading traffic. Fig
2b illustrates the improvement of our proposal by 7% in term of
average amount of offloaded data compared to the FIX scheme.

VI. CONCLUSION

In this paper, we have developed a Stackelberg game model for
the coordinated data offloading and resource partitioning problem
in co-channel two-tier heterogeneous networks. We have shown
that the problem in Stage-I at MBS is a mixed-boolean nonlinear
program, which is NP-hard. A low complexity solution method,
based on the branch and bound technique has been proposed to
solve the combinatorial nonconvex problem globally. We have
shown that the proposed game achieves a unique Stackelberg
equilibrium. Numerical results have confirmed that the proposed
algorithm converges fairly fast in all considered setups and
outperforms the conventional design.
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