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Matching Theory for Distributed User Association and
Resource Allocation in Cognitive Femtocell Networks
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Abstract—In this paper, a novel framework is proposed to
jointly optimize user association and resource allocation in the
uplink cognitive femtocell network (CFN). In the considered
CFN, femtocell base stations (FBSs) are deployed to serve a
set of femtocell user equipments (FUEs) by reusing subchannels
used in a macrocell base station (MBS). The problem of joint
user association, subchannel assignment, and power allocation
is formulated as an optimization problem, in which the goal
is to maximize the overall uplink throughput while guaranteeing
FBSs overloading avoidance, data rate requirements of the served
FUEs, and MBS protection. To solve this problem, a distributed
framework based on the matching game is proposed to model
and analyze the interactions between the FUEs and FBSs. Using
this framework, distributed algorithms are developed to enable
the CFN to make decisions about user association, subchannel
allocation, and transmit power. The algorithms are then shown
to converge to a stable matching and exhibit a low computational
complexity. Simulation results show that the proposed approach
yields a performance improvement in terms of the overall
network throughput and outage probability, with a small number
of iterations to converge.

Index Terms—Cognitive femtocell network, resource alloca-
tion, power allocation, subchannel allocation, matching game,
optimization problem.

I. INTRODUCTION

THe use of small cell networks based on the pervasive de-
ployment of low-power, low-cost femtocell base stations

provides a promising solution to improve the capacity and
enhance the coverage for indoor and cell edge users in next-
generation wireless cellular networks [1]. In order to utilize the
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limited licensed spectrum efficiently, FBSs will need to reuse
the same radio resources with the macrocell network in the
current LTE wireless system, which is based on orthogonal
frequency-division multiple access (OFDMA) [2]. This can
lead to severe co-channel cross-tier interference, thus requiring
a smart adaptive scheduling algorithm [2]. Cognitive radio
(CR) can be a promising technology for realizing such flexible
interference management. A femtocell network that reuses
subchannels based on CR technology is commonly known as
the cognitive femtocell network [3].

The goals of CFN deployment include the macrocell net-
work protection and guaranteeing served FUEs’ quality of ser-
vice (QoS) while maximizing the overall network throughput
[2], [3]. To reap the benefits of CFN deployment, some tech-
nical challenges such as interference management, efficient
spectrum usage, and cell association must be addressed [4]–
[6]. To address these issues, there are some existing works
on power allocation for the underlay CFN in the literature
[7]–[9]. Moreover, the problems of subchannel allocation
have been studied in [6], [10], [11]. In addition, the joint
subchannel and power allocation issues have been addressed
in [12]–[15]. Furthermore, user association design in the
CFN presents another major challenge [2], [4], [5]. More
recently, there are some studies on joint subchannel allocation
and user association in the CFN [16], [17]. In general, the
design of an efficient framework for joint user association,
subchannel allocation, and power allocation for the underlay
CFN must addresses various coupled problems, such as load-
sharing among femtocells, MBS protection, FBSs’ overloading
protection, and guaranteeing QoS for the served FUEs, and is
still under explored in the current literature. Additionally, the
uplink traffic model should be paid more attention to adapt
the inevitable traffic explosion in future mobile networks [18].
For example, the emergence of Internet of Things (IoT) and
machine type communications (MTC) change the bottleneck
from downlink to uplink [19], [20].

The main contribution of this paper is to introduce a novel
framework for joint user association, subchannel allocation
and power allocation in the uplink underlay CFN, which is
an NP-hard combinatorial optimization problem. This opti-
mization problem pertains to finding an optimal solution for
associating FUEs to FBSs, assigning subchannels to FUEs,
and allocating transmit power levels for FUEs to maximize the
uplink overall network throughput while considering intra-tier
and inter-tier interference. Additionally, this problem formu-
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lation guarantees the data rate requirement of served FUE and
provides FBS’ overloading protection and MBS protection. In
summary, we make the following key contributions:
• We develop a distributed framework based on a matching

game to solve the formulated optimization problem. The
motivation behind this design is to model the competitive
behaviors of FUEs, FBSs, and access controller, in the
interference management.

• We design distributed algorithms that enable to deter-
mine the association of FUEs to FBSs, assignment of
subchannels to FUEs, and the power allocation for FUEs
in an autonomous manner. In addition, the transmit power
is optimized by employing geometric programming and
dual-decomposition approaches. Then, we prove that the
proposed algorithms converge to a group stable matching.

• Simulation results show that the proposed approach yields
significant performance improvement in terms of the
overall network throughput and outage probability in both
the uniform and non-uniform user distribution scenarios,
with a small number of iterations.

The rest of this paper is organized as follows: Section
II discusses related work. Section III explains the system
model and problem formulation. The NP-hard combinatorial
optimization problem is solved based on the matching game
in Section IV. We also study the convergence and stability
of the proposed algorithms in Section IV. Section V provides
simulation results. Finally, conclusions are drawn in Section
VI.

II. RELATED WORK

Several recent studies have considered the resource allo-
cation and user association problem in the uplink CFN [2],
[4]–[13], [15]–[17]. These works, however, have only stud-
ied power control, subchannel allocation, or user association
problems separately.

For power control, existing works focus on efficient sharing
of a single channel through adaptively adjusting the power lev-
els in uplink two-tier femtocell networks [7]–[9]. The studies
in [7], [8] only considered access control and power control
to minimize the number of secondary users to be removed
and to maximize the overall network throughput for efficient
sharing of a single channel. The distributed power control
for spectrum-sharing femtocell networks using the Stackelberg
game approach is also presented in [9]. However, the proposals
in [7]–[9] do not consider the subchannel allocation issue.

There have been some existing works studying the subchan-
nel assignment for uplink OFDMA-based femtocell networks,
but they do not consider power control in their designs [6],
[10]–[13], [15]. In [10], the authors proposed two approaches
to mitigate the uplink interference for OFDMA femtocell
networks. In the first approach, FUEs are only allowed to use
dedicated subchannels if they produce strong interference to
the MUEs. In the second approach, the channel assignment
for both tiers is performed based on an auction algorithm.
Moreover, some other works address the joint subchannel
allocation and power control [11]–[13], [15]. A distributed
power control and centralized matching algorithms for sub-
channel allocation were proposed in [12], which lead to fair

resource allocation for uplink OFDMA femtocell networks.
A distributed auction game is employed to design the joint
power control and subchannel allocation in OFDMA femtocell
networks [13]. Additionally, the authors in [15] investigated
the joint uplink subchannel and power allocation problem
in cognitive small cells using cooperative Nash bargaining
game theory but ignoring interference among small cells.
Nonetheless, the system models in [11]–[13], [15] are based
on closed access models, where only the registered FUEs are
allowed to communicate with FBSs.

There have also been some existing works on the user asso-
ciation design for the uplink CFN [16], [17]. In [16], the au-
thors studied resource sharing and femtocell access control in
OFDMA femtocell networks, in which incentive mechanisms
are proposed to encourage FUEs to share their FBSs with
MUEs. However, this work considers only resource sharing
without power control. In [17], the authors propose a cross-
layer resource allocation and admission control framework in
a downlink CFN in which MUEs can establish connection
with FBSs to mitigate the excessive cross-tier interference and
achieve a better throughput.

Some ideas presented in this paper for the interference
management are related to those works in [21], [22]. In [21],
authors presented an uplink capacity analysis and interference
avoidance strategy for a shared spectrum two-tier DS-CDMA
network. In [22], authors proposed the non-collaborative inter-
cell interference avoidance method in order to ensure fairness
for cell edge users in the OFDMA network. The interference
avoidance method in [22] is not applicable for the spectrum
sharing network. Moreover, differently from these works, our
paper studies the interference management strategy based
on matching algorithm that captures on FUEs and FBSs’
behaviors to find the sub-optimal strategies of the proposed
optimization problem in the two-tier network.

Recently, the application of the matching theory to engineer
the future wireless network has received increasing attention
[23]–[25]. A concise introduction and survey on matching the-
ory applications is provided in [23]. A framework that jointly
associates user equipment to the FBSs and allocates FBSs to
the service provider using the matching game approach was
proposed in [24]. This work does not, however, consider the
underlay spectrum sharing approach between macro-tier and
femto-tier. In addition, the algorithms developed in [24] do not
ensure QoS guarantees for the served user equipments and the
feasible solution of the formulated optimization problem in
case of the resource limitation. An admission game for uplink
user association in wireless small cell networks is addressed in
[25]. The studies in [25] only considered the problem of user
association based on a college admissions game by utilizing
the matching and coalition game approach for the small cell
network that does not consider the spectrum sharing with the
macrocell network.

It can be seen that none of the existing works study joint
user association, channel allocation and power control in the
uplink CFN. This paper aims to address this joint design
problem based on the matching theory.
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Fig. 1: System architecture of a cognitive femtocell system.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and problem
formulation.

A. System model

We consider the uplink of an OFDMA cognitive femtocell
network, where a set M = {1, 2, ...,M} of FBSs operates
inside the coverage of a macrocell network and serves a set
N = {1, 2, ..., N} of FUEs as shown in Fig. 1. These FBSs
adopt an open access mode which allows any FUEs to use the
FBSs’ services [26]. FUEs are seen by indoor mobile users
or extended capacity coverage of the existing macrocell to en-
hance the users’ QoS in an ultra-dense femtocells deployment
[3]. We consider an OFDMA system with bandwidth B divided
into a set K = {1, 2, ...,K} of orthogonal subchannels, which
are reused by the CFN using the underlay spectrum access
model. These subchannels are correspondingly occupied by
K macrocell user equipments (MUEs). Additionally, there is
no interference among transmission on different subchannels.
FBSs are connected to a cognitive femtocell management
(CFM) controller that acts as a coordinator and spectrum man-
ager. FBSs and FUEs are assumed to be selfish and rational
entities that merely care about their own interests. Moreover,
we assume that FBSs and MBS have knowledge about channel
state information of FUEs. For notational convenience, we
define Km ⊂ K as the set of subchannels available for the
FBS m as allocated by the CFM. Furthermore, we assume that
each FUE is only permitted to access at most one subchannel.
Additionally, let Nm be the set of FUEs associated with the
FBS m, Nm ⊂ N . We will use the index 0 to denote the
MBS.

B. Problem formulation

We first describe all system and design constraints. After
that, we formulate the problem of optimal user association,
subchannel allocation, and power allocation.

FBS protection. The number of FUEs associated to each
FBS is restricted due to the femtocell hardware limitations
and the planned cellular networks of the femtocell network
operator [4], [5], which is also taken into account in [24],

[25], [27]. The number of FUEs that can be associated with
the FBS m is constrained as follows:∑

n∈N
xnm ≤ N̂m,∀m ∈M, (1)

where xnm is the binary variable representing the association
status between the FUE n and FBS m, and N̂m is defined
as a quota that represents the maximum number of FUEs
that can be supported by the FBS m. We further define
X = [xmn]M×N , where xmn = 1 means that the FUE n
is associated to FBS m, and xmn = 0 otherwise. FUE QoS.
We consider the minimum data rate requirement of each FUE
served by a certain FBS. When the FUE n is served by FBS
m on subchannel k with transmit power P kn , the data rate of
FUE n will be given by

Rknm = Bklog2(1 + Γknm), (2)

where Bk is the bandwidth of subchannel k, and Γknm is
the signal-to-interference-plus-noise ratio (SINR) of FUE n
associated with FBS m on subchannel k, which can be written
as

Γknm =
xnmynkg

k
nmP

k
n∑

n′∈N\{n}
m′∈M\{m}

xn′m′yn′kgkn′mP
k
n′ + gkkmPk + σ2

, (3)

where
∑

n′∈N\{n}
m′∈M\{m}

xn′m′yn′kg
k
n′mP

k
n′ is the total interfer-

ence from other FUEs to the FBS m on subchannel k; P kn ,
P kn′ , and Pk denote the powers of FUE n, FUE n′, and MUE
k on subchannel k, respectively; gknm, gkn′m, and gkkm are the
channel power gains on subchannel k from FUE n ∈ Nm,
from FUE n′ to FBS m, and from MUE k to FBS m,
respectively. For convenience, we define Y = [ynk]N×K as
the subchannel allocation matrix, where ynk = 1 means that
subchannel k is assigned to FUE n, and ynk = 0 otherwise,
and P = [P kn ]N×K is the power allocation matrix. Without
loss of generality, the noise power σ2 is assumed to be equal
for all FBSs.

To maintain the minimum QoS of FUEs, we assume that
the achievable rate of each FUE must be greater than or equal
to a minimum rate as follow:∑

k∈K

Rknm ≥ Rmin
n , (4)

where Rmin
n is a predefined parameter of the FUE n.

MBS protection. In our model, the total interference from
FUEs to the MBS on each subchannel k is constrained to be
below the threshold Ik,th0 to maintain the required QoS of the
underlying MUE. This constraint can be expressed as∑

n∈N
ynkg

k
n0P

k
n ≤ I

k,th
0 ,∀k ∈ K, (5)

where
∑
n∈N

ynkg
k
n0P

k
n is the total interference generated by all

FUEs to the MBS on subchannel k, and gkn0 is the channel
power gain on subchannel k from FUE n to MBS.

The joint user association, subchannel allocation, and power
control problem is formulated as an optimization problem



that aims to maximize the overall network throughput as
follows:

OPT : max.
(X,Y ,P )

∑
n∈N

∑
m∈M

∑
k∈K

Rknm (6)

s.t. (1), (4), (5),∑
m∈M

xnm ≤ 1, ∀n ∈ N , (7)∑
n∈Nm

ynk ≤ 1, ∀k ∈ K,∀m ∈M, (8)∑
k∈K

ynk ≤ 1, ∀n ∈ N , (9)

Pmin
n ≤ P kn ≤ Pmax

n , ∀n ∈ N ,∀k ∈ K, (10)
xnm = {0, 1} , ynk = {0, 1} ,∀m,n, k. (11)

Here, constraint (7) guarantees that each FUE can be
associated with at most one FBS; constraints (8) and (9) imply
that each subchannel can be allocated to at most one FUE
in the FBS, and each FUE can be allocated at most one
subchannel, respectively; constraint (10) guarantees that the
transmit power of each FUE is adjusted within the desired
range.

IV. MATCHING GAME BASED USER ASSOCIATION AND
RESOURCE ALLOCATION

It is observed that the OPT is a mixed integer and non-
linear optimization problem because it contains both binary
variables (X , Y ) and continuous variables P . Additionally,
the considered joint user association, subchannel and power
allocation problem is difficult to solve because of its coupled
constraints: i) FUEs’ QoS (constraint (4)) and ii) the macrocell
base station protection (the constraint (5)). In order to solve
the OPT, we iteratively solve three problems in three inter-
dependent phases: user association (UA) phase, subchannel
allocation (CA) phase, and power control (PC) phase as shown
in Fig. 2. The three phases are run sequentially in each iteration
until convergence. Firstly, given fixed transmit power in the PC
phase and channel allocation in the CA phase, the FUEs are
associated with the FBSs based on the one-to-many matching
game (MATCH-UA algorithm) in the UA phase. Secondly,
given fixed user association in the UA phase and transmit
power in the PC phase, FUEs are assigned to subchannels
based on the one-to-one matching game (MATCH-CA algo-
rithm) in the CA phase. Thirdly, given fixed user association
in the UA phase and subchannel allocation in the CA phase,
the transmit powers are determined in the PC phase. Addi-
tionally, we consider an access control scheme to guarantee
FUEs’ QoS, and MBS protection by utilizing the ELGRA
algorithm [8] in the PC phase. Moreover, we determine the
optimal transmit power by using geometric programming and
decomposition approaches (the DIST-P algorithm). Finally, we
propose the JUCAP algorithm that integrates the UA, CA, and
PC phases.

A. User association as a matching problem (UA phase)

We consider the optimization of the user association
solution X given the subchannel allocation Y and the
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Fig. 2: Proposed framework for solving the OPT problem.

transmit power allocation P by solving the following
optimization problem:

OPT-UA: max.
X

∑
n∈N

∑
m∈M

R(Km)
nm (12)

s.t. (1), (7),
xnm = {0, 1} , ∀m,n, (13)

P kn = Pmax
n /|Km|,∀n ∈ N . (14)

In the OPT-UA, constraints (4) and (5) of the original
problem OPT will be handled in the matching game formu-
lation of the UA, CA, and PC phase. The overall network
throughput is strongly impacted by the interference power at
FBSs and MBS protection constraints captured in (2), (3), (4),
and (5). In order to estimate the contribution to the overall
network throughput of each FUE, the CFM requests FUEs that
join the UA and CA phases are allocated power uniformly over
the set of available subchannels, as represented in constraint
(14).

In order to develop a distributed algorithm for the UA phase,
we use the one-to-many matching game [23], [28] that can
capture a local optimal solution for the OPT-UA problem.
Under this design, each FUE will be matched to at most one
FBS, while each FBS can be assigned to at most N̂m FUEs,
∀m ∈M.

1) Definition of a matching function for user association:
Formally, we can formulate the UA problem as a one-to-many
matching game defined by a tuple (M,N ,�M,UA,�N ,UA).
Here, �M,UA= {�m,UA}m∈M and �N ,UA= {�n,UA}n∈N
denote the sets of the preference relations of FUEs and FBSs,
respectively. The matching game for user association (µUA)
can be formulated as follows:

Definition 1. Given two disjoint finite sets of players N and
M, a matching µUA is defined as a function µUA: N 7→ M,



such that:
1, m = µUA(n)↔ n ∈ µUA(m);
2, |µUA(m)|≤ N̂m and |µUA(n)|≤ 1.

The outcome of the matching game is the user association
mapping µUA. If FUE n is matched to FBS m (m = µUA(n)),
then FBS m is also matched to FUE n (n ∈ µUA(m)). The
condition |µUA(m)|≤ N̂m ensures that at most N̂m FUEs will
be matched to FBS m under the matching µUA. The condition
|µUA(n)|≤ 1 guarantees that at most one FBS can be matched
to the FUE n under the matching µUA.

Let φnUA(m) and φmUA(n) denote the utility functions of FUE
n for FBS m and FBS m for FUE n, respectively. Given
these utilities, we can say that the FUE prefers FBS m1 to
m2, if φnUA(m1) > φnUA(m2), m1,m2 ∈ M. This preference
is denoted by m1 �n,UA m2. FBS m prefers FUE n1 to n2,
if φmUA(n1) > φmUA(n2), n1, n2 ∈ N , denoted by n1 �m,UA
n2. For the problem OPT-UA, we build interference lists of
FUEs and FBSs based on the utilities functions, as below:

Utility function of the FUE. For user association, we use
the average received SINR over all subchannels, which is the
most common criterion for use association in the wireless
network [25], [29]. In particular, In particular, the utility
archived by FUE n when it connects to the FBS m over Km
subchannels can be expressed as a function of the SINRs [24]
as follows:

φnUA(m) = log2

(
1 +

∑
k∈Km

Γknm

)
, (15)

where Γknm is given by (3). We can clearly see that the utility
of FUE n associated with each FBS m increases with the
channel gains and decreases with the interference from MUE
k (k ∈ Km) and other FUEs.

Utility function of the FBS. To maximize the objective
function (12), an efficient strategy must to be designed for the
FBS to accept a candidate FUE in the UA phase. Additionally,
the FBS’s strategy must be designed to mitigate the violations
of the constraints in (4) and (5) in the UA phase. To fulfill
these requirements, we propose a utility function for the FBS
that forms its preference relation to FUEs as follows:

φmUA(n) = ϕUA

∑
k∈Km

gknmP
k
n

Γth
n

− C(Km)
nm , (16)

where ϕUA is a weighting parameter capturing the benefit
and the average direct channel power gain from the FUE to
the FBS;

∑
k∈Km

gknmP
k
n

Γth
n

captures the channel gains of FBS

m for FUE n; Γth
n = 2R

min
n /Bk − 1 is the SINR threshold

corresponding to the minimum required rate in (4); C(Km)
nm

quantifies the aggregated relative interference that FUE n
causes to the MBS and the other FBS m′ (∀m′ 6= m) on
all subchannels in a set Km for a given transmit power P kn
which is defined as follows:

C(Km)
nm =

∑
k∈Km

(ck0δ
kgkn0P

k
n +

∑
m′∈M\{m}

ckm′g
k
nm′P

k
n ), (17)

where ck0δ
kgkn0P

k
n is the cost imposed by the MBS on sub-

channel k to FUE n, given the transmit power P kn ; δk =
max(0, (

∑
n∈N g

k
n0P

k
n − Ik,th0 )/Ik,th0 ) is defined to quantify

the degree of violation of the constraint (5) at the MBS on
subchannel k;

∑
m′∈M\{m} c

k
m′P

k
ng

k
nm′ describes the cost due

to the interference that FUE n causes to the other FBS m′

(m′ 6= m) on subchannel k; ck0 and ckm′ are the costs per unit of
the interference power at the MBS and FBS m′, respectively.
Here, ck0 � ckm′ is chosen in our design to guarantee that
the CFN blocks user association solutions that cause harmful
interference to the MBS. We can see that the utility function
of the FBS increases with channel gains and decreases with
aggregated interference from the FUE to the other base stations
(FBSs and MBS).

Due to the fact that Rmin
n is constant, (12) ≈

max
X

∑
n∈N

∑
m∈M(R

(Km)
nm −Rmin

n ). Moreover, by choosing
these utility functions in (16) and (17), we aim to maximize
the connected FUEs’ satisfaction max(R

(Km)
nm − Rmin

n ) and
minimize the possibility of an interference constraint violation
for the MBS on each subchannel k min(

∑
n∈N g

k
n0P

k
n−I

k,th
0 )

instead of strictly maintaining the constraints (4) and (5),
respectively. Additionally, the explanation for the increment of
the network throughput with direct channel gains is provided
below in Remark 1.

Remark 1. Given a transmit power and subchannel alloca-
tion, the value R(Km)

nm − Rmin
n of FUE n in FBS m increases

with
∑
k∈Km

gknm

Γth
n

P kn . This can be proved as follows.

Proof. See Appendix A in [30]

In order to compute the utility values in (16) and (17),
the FBSs and MBS should have the information on the
interference of FUEs induced on all base stations. Typically,
the FBS or MBS cannot directly measure these quantities [31].
FUEs can estimate the channel gains from the surrounding the
base stations to themselves by exploiting the pilots of base
stations and FUEs.

Next, we propose a matching game based user association
algorithm, namely, the MATCH-UA algorithm.

2) Distributed user association algorithm based on the
matching game: We now develop an algorithm to obtain a
stable matching, which is one of the key solution concepts in
matching theory [28]. Denote by µUA(m,n) the subset of all
possible matchings between M and N . A stable matching is
defined as follows:

Definition 2. A pair (m,n) 6= µUA, where m ∈ M, n ∈ N
is said to be a blocking pair for the matching µUA if it is
not blocked by an individual FUE n and FBS m, and there
exists another matching µ′UA ∈ µUA(m,n) such that FUE n
and FBS m can achieve a higher utility. This mathematically
implies that µ′UA �m µUA and µ′UA �n µUA. A matching µUA

is said to be stable if it is not blocked by an individual FUE
n and FBS m or any pair.

The problem OPT-UA can be solved in a distributed
manner based on a one-to-many matching game among the
FUEs and FBSs. The details of this algorithm are presented



Algorithm 1 MATCH-UA: Matching game for user associa-
tion.

Initialization: M,N , N req
m = ∅, N rej

m = ∅, P , N̂m, ∀m,n.
Discovery and utility computation:
1: Each FBS m broadcasts Km.
2: Each FUE n constructs �n,UA using (15).

Find stable matching µ∗UA:
3: while

∑
∀m,n

bUA
n→m(t) 6= 0 do

4: For each unassociated FUE n:
5: Find m = arg maxm∈�n,UA φ

n
UA(m).

6: Send a request bUA
n→m(t) = 1 to FBS m.

7: For each FBS m:
8: Update N req

m ← {n : bUA
n→m(t) = 1, n ∈ N}.

9: Construct �m,UA based on (16).
10: if |N req

m |≤ N̂m then
11: Nm ← N req

m .
12: else
13: repeat
14: Accept n = arg maxn∈�m,UA

∑
n∈Nm

φm
UA(n),

15: Update Nm ← Nm ∪ n.
16: until |Nm|= N̂m.
17: end if
18: Update N rej

m ← {N req
m \ Nm}.

19: Remove FBS m ∈�n,UA, ∀n ∈ N rej
m .

20: end while
Results: A stable matching µ∗UA.

in Algorithm 1 (MATCH-UA). After initialization, each FUE
constructs the preference relations �n,UA based on (15) (line
2). In order to find a stable matching µUA, each FUE n sends
a bid request bUA

n→m to FBS m, which has the highest utility in
its preference relation �n,UA (line 5). The bid value bUA

n→m =
1 when FUE n prefers to associate with FBS m, otherwise
it is equal to zero. At the FBS side, each FBS m inserts
the requested FUEs into a set N req

m . Then, FBS m updates
its preference relation �m,UA based on (16) (lines 8 and 9).
FUEs are updated according to matched list Nm by FBS m
under the matching µUA(m) if they guarantee a limited quota
N̂m and maximize the total utility in the matched list µUA(m)
(lines 14 and 15). FUEs in the rejected list N rej

m remove FBS
m in their preference relation of the UA phase (line 19).

The convergence of the MATCH-UA algorithm can be
verified by observing the preference formulation of players,
i.e., FUEs and FBSs in the game. Preference relations of
the FUEs and FBSs are fixed given subchannel allocation
and power allocation of FUEs. Hence, given fixed preference
relations of FUEs and FBSs, the MATCH-UA algorithm is
known as the deferred acceptance algorithm in the two-sided
matching which converges to a stable matching µ∗UA [32].

Lemma 1. The stable matching µ∗UA captures a local optimal
solution for the OPT-UA problem.

Proof. See Appendix B in [30]

After finishing the UA phase, the FUEs that are associated
to FBSs will be matched to subchannels, which is described
as follows.

B. Sub-channel allocation as a matching problem

In this phase, we assume a given fixed variable P . Then,
the subchannel allocation Y is determined by solving the
following optimization problem:

OPT-CA:
max.
Y

∑
n∈N

∑
m∈M

∑
k∈K

Rknm (18)

s.t. (8), (9), (14),
xnm = x∗nm, ∀m,n. (19)

In the problem OPT-CA, the constraints (5) and (4),
which will be considered in the PC phase, are also temporarily
ignored as mentioned in the UA phase. Obviously, this
optimization problem is still NP-hard. Moreover, we can
see that in the CA phase, since FUEs are allocated with
the transmit power as in (14), the interference at FBSs
from other femtocells are fixed. Thus, we can decompose
OPT-CA into M subproblems, where each subproblem
corresponds to the subchannel allocation of FBS m as follows:

OPT-CA{m}: max.
Y

∑
n∈Nm

∑
k∈Km

Rknm (20)

s.t. (8), (9), (14).

Here, we consider only FUEs that are matched to FBS m in
the UA phase, xnm = 1,∀n ∈ Nm ≡ µUA(m). OPT-CA{m}
is a combinatorial optimization problem with binary variables
ynk that can be solved in a centralized fashion. However, in the
considered model, the FUEs and FBS selfishly and rationally
interact in a way that maximizes their utilities. Therefore, in
order to model competition among the FUEs and FBSs, we
solve OPT-CA{m} using a one-to-one matching game [28],
[32], which helps us to find the subchannel allocation in a
distributed manner.

1) Definition of matching game for subchannel allocation
in the CA phase: The problem in (20) is formulated as a
matching game, which is defined by a tuple (Nm,Km,�Nm,CA
,�Km,CA). Here, �Nm,CA= {�nm,CA}n∈Nm and �Km,CA=
{�km,CA}k∈Km

denote the preference relations of the FUEs
and subchannels in FBS m, respectively. We define the prob-
lem as a one-to-one matching game, as follows:

Definition 3. Given two disjoint finite sets Nm and Km,
a matching game for subchannel allocation is defined as a
function µm,CA: Nm 7→ Km such that:
1, n = µm,CA(k)↔ k = µm,CA(n), ∀n ∈ Nm, k ∈ Km;
2, |µm,CA(k)|≤ 1 and |µm,CA(n)|≤ 1, n ∈ Nm, k ∈ Km,m ∈
M.

The conditions |µm,CA(k)|≤ 1 and |µm,CA(n)|≤ 1 in Defi-
nition 3 correspond to the constraints (8) and (9), respectively.
In the matching µm,CA, we define φnmCA (k) and φkmCA (n) as the
preference relations of utility values of FUE n in evaluating
subchannels in FBS m and the utility value of FBS m in
subchannel k for FUE n, respectively. Similar to the matching
definition in the UA phase, the FUE n associated to FBS m
preferring subchannel k1 to k2 and a subchannel k in FBS
m preferring FUE n1 to n2 are denoted by k1 �nm,CA k2



Algorithm 2 MATCH-CA: Matching game for allocating
subchannels in a single FBS.

Initialization: Nm,Km, N req
km = ∅, N rej

km = ∅, ∀n, k,m ∈M.
Discovery and utility computation:
1: Each FUE n n ∈ Nm constructs its preference relation �nm,CA

by estimating φnm
CA (k) on each subchannel k (k ∈ Km) based

on (21).
Find stable matching µ∗m,CA:
2: while

∑
∀k,n

bCA
n→k(t) 6= 0 do

3: Each FUE n ∈ Nm:
4: Find k = arg max

k∈�nm,CA
φnm

CA (k), ∀k ∈ Km.

5: Send a bid bCA
n→k(t) = 1 to FBS m.

6: Each subchannel k ∈ Km:
7: Update bidders list on each subchannel k

N req
km ← {n : bCA

n→k(t) = 1, n ∈ Nm}.
8: Construct preference relation �km,CA based on (22) .
9: Assign subchannel k to FUE n∗ = arg max

n∈�km,CA
φkm

CA (n).

10: Update reject list: N rej
km ← {N

req
km \ {n

∗}}.
11: Remove subchannel k from Φnk

CA , ∀n ∈ N rej
km.

12: end while
until: Convergence to stable matching µ∗m,CA.

(k1, k2 ∈ Km) and n1 �km,CA n2 (n1, n2 ∈ Nm), respec-
tively. Next, we define the utility function of both FUE and
FBS.

Utility function of the FUE. After each FUE is associated
with an FBS, the FUE obtains the corresponding utility as:

φnmCA (k) = Rknm, (21)

where FUE n estimates its utility on each subchannel k based
on the data rate achieved on subchannel k. By using the utility
function in (21), FUEs have to bid to occupy each subchannel
that maximizes their utility function.

Utility function of the FBS for each subchannel. In
response to the requests from the FUEs for occupying certain
subchannels, each FBS wishes to maximize a utility function
on each subchannel, which is proposed as follows:

φkmCA (n) = ϕCA
Rknm −Rmin

n

Rknm
− Ckn, (22)

where Rk
nm−R

min
n

Rk
nm

describes the reduction ratio of the effective
interference required for UE n on subchannel k, and Ckn =
ck0δ

kP kng
k
n0 +

∑
m′∈M\{m} c

k
m′g

k
nm′P

k
n ; ϕCA is a weighted

parameter. Obviously, for a given fixed power and subchannel
allocation, the value (Rknm − Rmin

n ) of FUE n in FBS m

increases with Rk
nm−R

min
n

Rk
nm

. In our proposed matching game,
each FBS m prefers to assign its subchannel to the FUE that
maximizes the FUE’s satisfaction, but minimizes the impact
on the macrocell network and aggregate interference to other
FBSs on each subchannel.

2) Distributed algorithm for subchannel allocation based
on the matching game: For the proposed one-to-one matching
game, our goal is to find a stable matching which is similarly
defined as the Definition 2. A matching µCA is said to be
stable if it is not blocked by individual FUE n and FBS m
with subchannel k or any pair.

The distributed algorithm to solve the OPT-CA{m} is
presented in the MATCH-CA algorithm. In this algorithm,
each FUE constructs its preference relation based on (21)
(line 1). In the swap matching phase, each FUE sends a
bid request bCA

n→k(t) = 1 to access the subchannel k that
has the highest utility value (lines 2, 3 and 4). At the FBS
side, the FBS collects all bidding requests and constructs a
preference list on each subchannel (lines 7, 8 and 9). Based
on the preference relation of the subchannels, the FBS assigns
subchannels to FUEs which bring the highest utility value (line
10). The FUE removes the subchannel which is rejected by
FBS m in its preference (line 11). In the formulated game,
preference relations of FUEs and subchannels in a single
FBS are determined based on broadcast information in the
network, as in the matching game in the UA phase. Hence,
for a given subchannel allocation and power allocation of the
FUEs, the formulated preference relations of the FUEs and
subchannels are fixed. Moreover, the process of acceptance or
rejection of applicants is performed in a manner similar to the
conventional deferred acceptance algorithms [28], [32]. Thus,
the MATCH-CA algorithm in single FBS m converges to the
stable matching µ∗m,CA,∀m ∈M.

Lemma 2. The stable matching µ∗CA is a local optimal solution
for the OPT-CA{m} problem.

Proof. The proof is similar to that for Lemma 1 so it is
omitted.

C. Power allocation in the PC phase

Since each subchannel can be allocated to multiple FUEs
associated with different FBSs, there is multi-cell interference
among different femtocells. To mitigate the multi-cell inter-
ference among different femtocells and improve the spectrum
utilization, subchannel and power allocation among femtocells
needs to be coordinated.

In order to coordinate different femtocells, each FBS m
can send its proposed solutions ∀n ∈ µ∗m,CA(k) to the CFM
on subchannel k, ∀k ∈ Km. The CFM collects information
from FBS and then makes decisions about the subchannel
and power allocation to the proposed femtocells, in which the
coordinated problem is decomposed into K sub-problems.
Each sub-problem is given by

OPT-PC{Gk},k∈K:max.
P(Gk)

∑
(n,m)∈Gk

Rknm(P(Gk)) (23)

s.t. (5), (4), (10).

Here, we only consider the FUE-FBS pairs which are
assigned the same subchannel k, denoted by the set Gk =
{(m,n)|n = µUA(m), n = µm,CA(k),∀n ∈ N ,∀m ∈
M, k ∈ K}. OPT-PC{Gk},k∈K is commonly known as the
problem of joint power and admission control of the FUEs
based on spectrum underlay, which aims to find and admit
a subset of FUEs to optimize different objectives [8], [9].
These objectives include maximizing the number of admitted
FUEs in the set Gk and maximizing the total throughput of
(23). The problem of maximizing the number of active FUEs
on subchannel k is well-studied in the literature, with many



existing schemes for finding the optimal solutions [8], [9]. In
our work, we utilize an algorithm called an effective link gain
radio removal algorithm (ELGRA), which is proposed in [8].
ELGRA is proved to obtain the globally optimal solution of
the minimum outage problem stated in the OPT-PC{Gk},k∈K
with a computational complexity of O(|Gk| log|Gk|).

Once a maximal feasible subset Gk is found that is defined
by Gk, what remain is to adapt the transmit-power P(Gk) of
the admitted FUEs so that the sum rate in OPT-PC{Gk},k∈K
problem is maximized. Different from previous works, we
solve OPT-PC{Gk},k∈K using geometric programming and
dual decomposition [33]–[35].

Toward this end, we transform OPT-PC{Gk},k∈K into a
convex optimization problem. When Γknm >> 1, we employ
the approximation Rknm ≈ Bk log(Γknm). Additionally, we
introduce a new variable P̃ kn = logP kn with a new feasible
set Vkn = {P kn |P kn ∈ [logPmin

n , logPmax
n ], ∀n ∈ Gk}.

Moreover, we define an auxiliary variable to estimate the
intra-tier interference Zknm

∆
=

∑
n′∈Gk,n′ 6=n g

k
n′mP

k
n′ and

a new variable Z̃knm = log(Zknm), ∀(n,m) ∈ Gk. The
OPT-PC{k},k∈K then becomes:

OPT-PC′{k},k∈K:

min.
(P̃ ,Z̃)

∑
(m,n)∈Gk

log

[
e−P̃

k
n

gknm

(
eZ̃

k
nm + gkkmP

k
k + σ2

)]
(24)

s.t.∑
n∈Gk

gkn0e
P̃k

n − Ik,th0 ≤ 0, (25)

log
[
e−P̃k

n

gknm

(
eZ̃

k
nm + gkkmP

k
k + σ2

)]
− log (χn) ≤ 0,

∀(n,m) ∈ Gk,
(26)

Z̃knm = log(Zknm),∀(n,m) ∈ Gk, (27)

P̃ kn ∈ Vkn,∀n ∈ Gk, (28)

in which χn = 2
−R

th,min
n
Bk , ∀n ∈ Gk.

Proposition 1. The problem OPT-PC′{k},k∈K is a convex
optimization problem in (P̃ , Z̃)-space. Then, based on the
KKT condition and sub-gradient method, the optimal transmit
power levels are determined as follows:

P k∗n = eP̃
k
n =

[
1 + κknm
λkgkn0

]Pn

,∀(n,m) ∈ Gk, (29)

where [a]Pn is the projection of a onto the set Pn =

[Pmin
n , Pmax

n ]. Moreover, the auxiliary variable ˜Zknm is deter-
mined as follows:

eZ̃
k
nm =

[(
gknmP

k
k + σ2

)
νknm

1− νknm + κknm

]+

, (30)

in which the Lagrange multipliers λk, κknm, and consistency
price νknm are updated as in (31), (32), and (33) with step

Algorithm 3 DIST-P: Distributed power allocation on sub-
channels
Input: Gk, k ∈ K, t = 0, P k

n ∈ Pn, λk (0) > 0, κk
nm(0) > 0,

νknm(0) > 0, ∀(n,m).
Each FBS m (m ∈M):
1: Estimate Zk

nm.
2: Calculate eZ̃

k
nm(t+ 1) based on (30).

3: Update κk
nm(t + 1) and νknm(t + 1)) using (32) and (33),

respectively.
4: Transmit κk

nm(t+ 1) to FUE n.
Each FUE n (n ∈ Nm):
5: Receive the updated value κk

nm(t+ 1).
6: Update the Lagrange multipliers λk(t+ 1) from (31).
7: Calculate the power value P k

n (t+ 1) as in (29).
8: Broadcast gkn0 and P k

n (t+ 1).
Output: Convergence to optimal power P k∗

n .

sizes s1, s2, and s3, respectively.

λk(t) =

[
λk(t− 1) + s1(t)

(∑
n∈Gk

gkn0e
P̃k

n − Ik,th0

)]+

,

(31)

κknm(t) =
[
κknm(t− 1) + s2(t) logχknm − log(χn)

]+
, (32)

νknm(t) = νknm(t− 1) + s3(t)
(
Zknm − eZ̃

k
nm

)
. (33)

where χknm = e−P̃k
n

gknm

(
eZ̃

k
nm + gkkmP

k
k + σ2

)
. The parameters

si(t) (i = 1, 2, 3) represent the step sizes which are chosen
to satisfy the convergence of algorithm [36], and [a]+ =
max{a, 0}.

Proof. See Appendix C in [30]

Then, we employ the sub-gradient method to update the
Lagrange multipliers and find the optimal power allocation as
in Algorithm 3, namely DIST-P.

In the DIST-P algorithm, the information exchange among
FUEs and FBSs can be realized by exploiting feedback,
such as ACK/NACK. Note that the messages in the DIST-P
algorithm are broadcast to coupled FUEs and FBSs in the set
Gk through the coordination of CFM. Moreover, gkn0 required
in the DIST-P algorithm can be estimated at FUE n in
femtocell m by using any of the available channel estimation
methods [31].

Lemma 3. If the optimization problem OPT-PC′{k},k∈K is
feasible, then the DIST-P algorithm converges to the optimal
solution P ∗.

Proof. See Appendix D in [30]

If Lemma 3 is not true, FUEs that sent proposals to CFM
would not be guaranteed to achieve their QoS. Moreover, MBS
may not be protected without the DIST-P algorithm.

Moreover, we see that in the PC phase, by using distributed
ELGRA and DIST-P algorithms, the access controller prefers
to serve a set of FUEs on each subchannel k that satisfies
all of the constraints in OPT-PC′{k},k∈K. It can be verified
that, in order to converge with TGk iterations for the Gk pair
FUE-FBSs, the exchange overhead is |Gk|TGk .



Algorithm 4 JUCAP: Join UA, CA, and PC
Inputs: N ,M,K.
Initialize: τ = 0, Gk = ∅; FBSs broadcast the set Km, and announce the set
of available subchannels. Initialize the set of Gk for each subchannel k, k ∈ K
as an empty set.

While Gk , ∀k ∈ K remain unchanged for two consecutive iterations.
1: τ = τ + 1;
UA Phase:

2: FUEs determine their preference ordering for FBSs m ∈M using (15).
3: FBSs calculate utility of each FUE applicant (16).
4: FUEs apply for FBSs m ∈ M and get accepted or rejected via the

MATCH-UA algorithm.

CA Phase:
5: FUEs that are accepted in FBS m ∈ M apply for subchannel k ∈
Km,∀m ∈M using (21).

6: FBSs calculate utility of FUEs applicant on subchannel k ∈ Km, ∀m ∈
M using (22).

7: FUEs get accepted or rejected by FBSs on subchannels via the
MATCH-CA algorithm.

PC Phase:
8: FBSs send FUE’s proposal on subchannels to the access controller.
9: FUEs get accepted or rejected by CFM on subchannels k ∈ K via the

ELGRA algorithm.
10: Update Gk, ∀k ∈ K.
11: FUEs update power using (34).
12: FUEs and FBSs update user association and subchannel assignment

information.
13: repeat UA phase, CA phase, and PC phase.

end

Output: Convergence to group stable Gk, ∀k ∈ K.

Then, the transmit power of FUEs in the set Gk will be
updated as follows:

P kn =

{
P k∗n , if n is accepted by CFM on subchannel k.
0 , if n is rejected by CFM on subchannel k.

(34)
In (34), P k∗n is updated as in (29), which means that the

FUE n is permitted to transmit on subchannel k with power
level P k∗n . In addition, the transmit power P k∗n of FUE n on
subchannel k is maintained the same during the UA and CA
phases in the next iteration. However, these FUEs will not be
included at the UA and CA phases in the next iteration. On
the other hand, when P kn is set to be zero, which mean that
subchannel k is not allocated to FUE n at FBS m by the CFM,
then in next iteration, subchannel k will not be considered in
the preference relations of FUE n at FBS m in the CA phase.
However, the FUEs that are rejected in the PC phase will
continue joining the UA and CA phases. Next, the transmit
power of the rejected FUEs will be determined, as discussed
in (14).

Obviously, after finishing the PC phase, the transmit power
and subchannel allocations of the FUEs are updated, which
affects the preference of players in the UA and CA phases.
Next, we propose a framework for joint user association,
subchannel assignment, and power allocation.

D. Joint user association, subchannel allocation, and power
control

In this subsection, we propose a framework for joint UA,
CA, and PC phases, shown in Fig. 2. The proposed framework
is summarized in Algorithm 4, which is referred to as the

JUCAP algorithm. The proposed algorithm comprises three
main phases: the UA phase, CA phase, and PC phase, oper-
ating in separated time scales. The UA phase matches FUEs
to FBSs. The CA phase focuses on the matching of FUEs to
subchannels in the associated FBS. The PC phase performs
admission controls, updating subchannels, and transmit power
allocation by the CFM.

Initialization. FBSs use candidate control channels to send
proposals, which are composed of Femto-ID and their avail-
able subchannels to its surrounding FUEs. FUEs accept or
reject the proposals. Then, the channel gain states of the
FUEs are estimated and sent back to FBSs that accepted the
proposals. Next, the preference relations of FUEs and FBSs in
the UA and CA phases are estimated at the beginning of each
iteration. Utility values in the preference relation of FUEs and
FBSs will be maintained in whole matching processes in the
UA and CA phases of an iteration.

UA phase. After initialization, FUEs join the UA phase.
The FUEs first determine their preference orders for FBSs
using (15) (Step 2). Each FUE applies for an FBS based on
the estimated utility value in (15) (Step 3). Then, each FBS
accepts the most preferred FUE and rejects other proposals
based on the utilities defined in (16) and FBSs’ quota. The
FUEs in the UA phase get accepted and rejected by FBSs,
as in the MATCH-UA algorithm (Step 4). Once FUEs are
accepted by an FBS or rejected by all its preferred FBSs, the
MATCH-UA algorithm is terminated. The matching in the UA
phase remains unchanged until the FUEs start new iterations.

CA phase. When the MATCH-UA algorithm is terminated
in the UA phase of the current iteration, the FUEs accepted by
FBSs will join the CA phase. The FUEs that are associated
to FBS m apply for k ∈ Km based on the utilities defined
in (21). Each FBS m ∈ M handling the subchannels Km
accepts the FUE that gives the higher utility based on (22).
In addition, the FBSs m ∈ M reject all other applicants.
The MATCH-CA algorithm terminates when every FUE is
accepted by a subchannel or rejected by all subchannels in
the associated FBS.

PC phase. After finishing the CA phase, FUEs join the PC
phase, where the minimum data rate requirement and MBS
protection have to be guaranteed. The FBSs send proposals on
subchannels to the access controller in the CFM (step 8). Next,
FUEs get accepted or rejected by the CFM on subchannels
via the ELGRA algorithm to guarantee a feasible solution
of OPT-PC{Gk},k∈K, as discussed in Section IV.C (step
9). The FUEs and FBSs accepted in the ELGRA algorithm
or allocated by the CFM will be inserted into the groups
Gk,∀k ∈ K. Then, the transmit power of FUEs belonging
to the groups Gk,∀k ∈ K is updated by using (34) (step 11).
Given a set of proposals of FBSs on subchannels k ∈ K, the
PC phase is terminated when both the ELGRA and DIST-P
algorithms converge to the the optimal solutions, which are
discussed in Section IV.C. At the end of the iterations, the
information about remaining quota, subchannel availability,
user association, subchannel allocation, and transmit power
are updated in the next iteration.

In our proposal, once (m,n) pairs are rejected by the
subchannel k in the PC phase, these FUEs are not served



by any FBS. Then, these FUEs will be considered as new
users. After that, these FUEs are moved to the new iteration,
which again performs the UA, CA, and PC phases. In order
to start new iterations, preference relations of the FUEs and
FBSs in both the UA and CA phases will be updated in the
last step of the previous iterations. However, FUEs rejected by
the CFM on the proposed subchannel will not be considered
in the new preference relation in the CA phase at the next
iteration. Additionally, when the FUE is rejected by the CFM
on all subchannels in the matched FBS, this FBS will not
be considered in the preference relation of the UA phase in
the next iteration. Specifically, the FUEs that are not rejected
by the CFM in the previous iterations will not join the next
matchings in the UA and CA phases. However, in order to
optimize a reused subchannel in the CFN, new proposals
from FBSs on subchannels at the CFM are still processed
in the PC phase. Obviously, social welfare is maximized on
each subchannel given optimal proposals from the FBSs. In
addition, when the JUCAP algorithm proceeds to ELGRA
and DIST-P, these algorithms enable the feasibility of two
constraints (4) and (5), respectively. Subsequently, the JUCAP
algorithm terminates once the groups Gk,∀k ∈ K do not
change for two consecutive iterations (step 12). This means
that there is no further new requests from FUEs in three
UA, CA, and PC phases for two consecutive iterations. The
convergence of the JUCAP algorithm and groups stability are
analyzed in Section E.

E. Convergence and stability of the proposed algorithm

In this subsection, we prove convergence of the JUCAP
algorithm. Let us consider group Gk, k ∈ K, which is formed
as a result from the UA, CA, and PC phases. Then, we
introduce the following definition:

Definition 4. Given the interrelationship between FUEs, FBS,
subchannels, and CFM in the JUCAP algorithm, the group
Gk, k ∈ K is said to be stable if it is not blocked by any group
which can be represented by two conditions as follows:

1) No FUE n′ outside the group Gk can join it.
2) No FUE n inside the group Gk can leave it.

Matchings in the JUCAP algorithm are stable if and only
if all groups Gk,∀k ∈ K are group stable.

We consider a group stable Gk of (n,m) pairs that is formed
at the end of the iteration τ . Assuming ∃n′ ∈ N\Gk, n′ 6= n,
we consider two scenarios: (n′, n) ∈ Nm and n′ ∈ Nm′ , n ∈
Nm,m 6= m′. In the first scenario, n′ = µUA(k) and
n′ = µm,CA(k) due to (n′, n) ∈ Nm and (n′, n) ∈ Gk.
However, n ∈ µm,CA in the CA phase at iteration τ and
n �km n′. Hence, n′ 6= µm,CA(k) if n′ 6= n. Therefore, FUE
n′ cannot join group Gk. In the second scenario, n′ ∈ Nm′ , n ∈
Nm,m 6= m′. In this scenario, n′ = µm′,CA(k) at iteration
τ . Given the proposal (n′,m′) to the CFM in the PC phase,
n′ can join Gk if

∑
(n′,m′)→Gk Rknm >

∑
Gk\(n′,m′)R

k
nm.

However, since Gk is formed by stable matchings in the
CA phase, if (n′,m′) is sent to the CFM in the iteration τ
by FBS m′, (n′,m′) was rejected by the CFM. Therefore,
condition 1 is guaranteed. For condition 2, similarly, because
the (m,n) pair is formed by the stable matching µm,CA,

there is no matching µ′m,CA and (n, k′) ∈ µ′m,CA, where
µ′m,CA �nm µm,CA or mu′m,CA �km µm,CA. Hence, FUEs
inside the group Gk cannot leave this group.

However, Definition 4 is not sufficient to ensure the required
stability of the matchings in the JUCAP algorithm.

Theorem 1. Matchings in the UA, CA, and PC phases are
stable matchings in each iteration τ of the JUCAP algorithm.

Proof. See Appendix A

From Definition 4 and Theorem 1, we can state the conver-
gence of the JUCAP algorithm in the following.

Theorem 2. A group stable Gk is formed in a finite number
of iterations and, thus the JUCAP algorithm is guaranteed to
converge.

Proof. Because the number of FBSs and subchannels are
finite, the numbers of preference relations �n,UA, �m,UA,
�nm,CA, and �km,CA of FUEs and FBSs are also finite.
Moreover, the number of preference relations �n,UA, �m,UA,
�nm,CA, and �km,CA are reduced after each iteration due
to the rejected operations in the UA, CA, and PC phases.
Furthermore, the accepting or rejecting decision in the JUCAP
algorithm is based on stable matchings at each iteration, as
stated in Theorem 1. Therefore, each group stable Gk that
is defined in Definition 4 is formed after a finite number of
iterations.

To analyze the complexity and overhead of the JUCAP
algorithm, we find an upper bound on the maximum number
of requested messages at each outer iteration τ . We abuse
the notation τ as the slot time duration at the τ -th outer
iteration of the JUCAP algorithm. The requested messages
at each iteration τ is determined by number of requested
messages that must be exchanged in the UA, CA, and PC
phases at each outer τ -th iteration. By considering the worst
case for each phase at the outer iteration τ , an upper bound
on the number of requested messages of a slot time τ can
be determined by NUA(τ) × M , NCA(τ) × K × M , and
maxk∈K(|Gk(τ)|) × K, respectively (See Appendix C in
[30]). Here, we define NUA(τ) and NCA(τ) as the number
of FUEs join into the UA and CA phases at the iteration
τ , respectively. Additionally, |Gk(τ)| is the number of FUE-
FBS pairs join into the subchannel k in the PC phase at the
iteration τ , where |Gk(τ)|≤ M,∀k. Hence, the upper bound
on the number of requested messages during a slot time τ is
NUA(τ)×M + (NCA(τ)×M + maxk∈K(|Gk(τ)|))×K.

V. SIMULATION RESULTS

This section presents simulation results to evaluate the
proposed algorithms. We first present our setup and then the
results.

A. Simulation setup

In order to evaluate our framework, we use the following
simulation setup. We simulate an MBS and 5 FBSs (M = 5)
with the coverage radii of 500 m and 25 m, respectively. The
FBSs are deployed in a small indoor area of 250 × 250 m2



to serve N = 20 FUEs. Each FBS has the quota equal to 4
N̂m = 4(∀m) [4]. In the CFN, we consider 10 subchannels,
which are allocated to 10 MUEs in the macrocell network.
The bandwidth of each subchannel is 360 kHz and MUEs
have a fixed power level of 100 mW. The power channel gains
are assumed to be i.i.d Rayleigh fading with the mean value
of one. The path loss model is followed by the log-distance
path loss model [37], [38]. In the MUE-to-MBS path-loss for
distance d, Ld = 15.3 + 37.6 log10(d). In the FUE-to-MBS
path-loss for distance d, Ld = 15.3 + 37.6 log10(d) + ρ. The
wall penetration loss ρ equals to 10 dB. In the FBS-to-same-
cell-FUE path-loss for distance d, Ld = 38.46 + 20 log10(d).
In the FUE-to-other-cell-FBS path-loss for distance d, Ld =
max{38.46 + 20 log10(d), 15.3 + 37.6 log10(d)} + 2ρ. The
maximum interference power on each subchannel at the MBS
is -70 dBm. The noise power is set to -114 dBm. Each FUE
has a minimum rate of 2.048 Mbps. Each FUE has a maximum
transmit power of 100 mW. We set the values of ϕUA, ϕCA, ck0 ,
and ckm(∀m, k) equal to 100, 100, 10, and 0.1, respectively.
Moreover, the MUEs are randomly distributed outside the area
250× 250 m2.

B. Simulation results

In the following, we present the results based on the above
settings. We first show single snapshot results from executing
the algorithms only once. Then, the results over multiple time
intervals will be presented.

1) Evaluation of the proposed algorithms in a single snap-
shot: We now present a snapshot resulting from the proposed
algorithms in the UA, CA, and PA phases with N = 20 FUEs,
M = 5 FBSs, K = 10 subchannels, and N̂m = 4. The results
of the distributed user association based on the MATCH-UA
algorithm for given network settings are presented in Fig. 3. A
load-sharing has been achieved in the MATCH-UA algorithm
to avoid FBS overloading, as shown in Fig. 3a. We can see that
the allocated subchannel (Fig. 3b) and power level (Fig. 3c)
for the FUEs can meet the constraints on the minimum data
rate, as presented in Fig. 3d.

2) Evaluation of the proposed algorithms over multiple
snapshots: We evaluate our proposals by considering average
throughput and outage probability. In addition, we evaluate
the convergence time of the proposed algorithms via the total
number of requests, which are requested in the UA, CA, and
PC phases, to meet the JUCAP algorithm convergence as
discussed in Theorem 2. All statistical results are averaged
over a large number of independent simulation runs. Moreover,
we compare the average throughput and outage probability
against three other schemes: “max-SINR without JUCAP”,
“without ELGRA”, “without DIST-P” and “max-SINR with
JUCAP”. Basically, the compared schemes are based on
the JUCAP algorithm. For the “max-SINR without JUCAP”
scheme, the UA phase is executed by removing step (19) in the
MATCH-UA, which is known as the “max-SINR algorithm ”.
Additionally, the CA phase is performed based on the “greedy
algorithm” by removing the step (11) in the MATCH-CA
algorithm. For the “max-SINR with JUCAP” scheme, the
UA phase is executed based on the “max-SINR algorithm”.
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Fig. 3: A snapshot of the subchannel allocation, power
allocation, and data rate of the FUEs resulting from the

proposed algorithm with N = 20 FUEs, M = 5 FBSs, K =
10 subchannels, and N̂m = 4.
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Fig. 4: Overall throughput, average outage probability, and
overhead analysis in uplink CFN versus quota value N̂m
when M = 5 FBSs, N = 20 FUEs, K = 10 subchannels.

For the “without ELGRA” scheme, the ELGRA algorithm is
removed in the PC phase. Then, applicants to the PC phase
are processed directly by the DIST-P algorithm. By doing this,
the CFM rejects applicants that would not guarantee the FUEs’
QoS and MBS protection as discussed in Lemma 3. For the
“without DIST-P” scheme, the PC phase ignores the DIST-P
algorithm and the transmit powers of FUEs are set equal to the
maximum power on the assigned subchannel. By doing so, the
minimum data rate requirements of the FUEs and interference
power constraint at the MBS may not be guaranteed. When
these constraints are violated, the FUEs are not permitted to
transmit data, which are controlled by the CFM.

Fig. 4a and Fig. 4b present the average aggregate throughput
and outage probability following the quota values of FBSs
with 20 FUEs, 5 FBSs, 10 subchannels, and Ik,th0 = -70 dBm,
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Fig. 5: Overall throughput and average outage probability in
uplink CFN versus number of FUEs when M = 5 FBSs,

|N̂m| = 4, K = 10 subchannels.

∀k, respectively. The FUEs are deployed uniformly inside the
FBSs’s coverage. As shown, the average throughput in our
proposed scheme increases with the quota value of SBSs since
the number of served FUEs increases. However, this value
is saturated as the quota value becomes sufficiently large.
Moreover, we can see from Fig. 4a that the average network
throughput of the “proposed approach” scheme can reach up
to 30.72%, 646.71%, 110.37, and 2.34% gain over the “max-
SINR without JUCAP”, “without ELGRA”, “without DIST-
P”, and “max-SINR with JUCAP” schemes with a quota value
of 4, respectively. Additionally, Fig. 4b shows that the average
outage probability of our proposal decreases as the quota value
increases. This is because the higher quota value increases
the number of FUEs that are associated in the UA, CA, and
PC phases. Clearly, the “proposed approach” scheme outper-
forms the “max-SINR without JUCAP”, “without ELGRA”,
“without DIST-P”, and “max-SINR with JUCAP” schemes in
terms of both the average network throughput and the outage
probability.

In Fig. 5a, we show the average network throughput and
outage probability of the uplink CFN for different numbers of
FUEs. The number of FUEs increased from 0 (FUEs) to 30
(FUEs) while fixing the interference threshold on all subchan-
nels to Ik,th0 = -70 dBm. The FUEs are deployed uniformly
inside the FBSs’s coverage. In this figure, we can see that as
the number of FUEs increases, the average network throughput
of the “proposed approach” scheme increases due to the
increase in the number of FUEs that join the UA, CA, and PC
phases. However, this average network throughput will saturate
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Fig. 6: Evolution of the JUCAP algorithm in term of total
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subchannels.

for large network sizes since the SBSs’ quota and subchannels
are limited. Moreover, Fig. 5a compares the average network
throughput for the “proposed approach” scheme and the other
three schemes as the number of FUEs varies. In Fig. 5a, we
can see that the “proposed approach” scheme outperforms the
other schemes by increasing the average network throughput
for a different number of FUEs. Specifically, Fig. 5a shows that
the average network throughput of the “proposed approach”
scheme can reach up to 30.04%, 596.51%, 113.15%, and
4.86% gain over to the “max-SINR without JUCAP”, “without
ELGRA”, “without DIST-P”, and “max-SINR with JUCAP”
schemes for the network size of 16 FUEs, respectively.

Fig. 5b compares the average outage probability for the
“proposed approach” and other three schemes. The outage
probability determines how many of FUEs on average could
be served by the femtocell network. The average outage
probability increases with the number of FUEs because more
FUEs will be rejected in the UA, CA, and PC phases. This
is because the competition among FUEs in the UA, CA, and
PC phases increases when number of FUEs increases and the
network resources become more scarce. Moreover, Fig. 5b
shows that the “proposed approach” scheme can achieve the
smallest average outage probability.

Fig. 5c evaluates the average number of requests and
iterations versus the number of FUEs in the network from
the JUCAP algorithm. As shown in Fig. 5c, the average total
number of requests in the UA phase increases with the number
of FUEs. This is because the number of requests in the UA
phase depends on the number of FUEs that bid to associate
FBSs and rejected FUEs in the MATCH− UA algorithm.
Moreover, Fig. 5c shows that the number of requests in the CA
phase increases with number of FUEs from 0 to 20, since FBSs
can still have resources to serve. The number of requests in the
CA phase does not increase much when the number of FUEs
is greater than 20. This is because the maximum number of
FUEs which can be associated with FBSs is 20 with network
parameters M = 5 and N̂m = 4,∀m ∈ M for each FBS.
Moreover, given that requests from the FBSs in the PC phase
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Fig. 7: Overall throughput in the uplink CFN versus the
number of FUEs for a small network with M = 5 FBSs, K
= 10 subchannels, quota value |N̂m| = 4, and non-uniform

distribution of FUEs.

depend on the number of FUEs that are accepted in the CA
phase, the number of requests in the PC phase is less than the
number of requests in the CA phase. Fig. 5c is also showed that
the total number of requests in the system increases when the
network size increases. However, in general, the total number
of requests is finite and small compared to the network size,
i.e., the number of requests reaches up to 250 for a network
size of 30 FUEs, 5 FBSs, a quota of 4, and 10 subchannels.

In Fig. 6, we capture the evolution of the JUCAP algorithm
in term of absolute time with different the number of FUEs
within a single snapshot. As shown in Fig. 6, the JUCAP
algorithm is stopped when there are no further new requests
from FUEs in three UA, CA, and PC phases. Moreover, due
to the number of new requests in three phases decreases after
each outer iteration τ , the number of requested messages also
decreases after each outer iteration τ . Hence, the analysis in
Fig. 5c and Fig. 6 demonstrate that the JUCAP algorithm
converges and achieves a stable state within a small number
of the outer iterations.

In order to estimate the loss due to the proposed approach,
we further show the robustness of the JUCAP algorithm with
respect to user distribution. In Fig. 7, we consider a non-
uniform distribution of the FUEs. In Fig. 7, we can see that
the “proposed approach” scheme also outperforms the other
schemes by increasing the average network throughput for
a different number of FUEs. Moreover, Fig. 7 shows that
the average network throughput of the “proposed approach”
can reach up to 28.25%, 470.39%, 91.66%, 21.16% gain
over to the “max-SINR without JUCAP”, “without ELGRA”,
“without DIST-P”, and “max-SINR with JUCAP” schemes,
respectively for the network size of 30 FUEs. Clearly, the
average throughput of the “proposed approach” in the non-
uniform FUEs distribution scenario is higher than that of the
uniform FUEs distribution scenario.

In Fig. 8, we show the average total network throughput
of all femtocells versus the maximum power of FUEs for the
different schemes. The FUEs are deployed uniformly inside
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Fig. 8: Overall throughput in the uplink CFN versus the
maximum power of each FUE for a small network with N =
8 FUEs, M = 4 FBSs, K = 4 subchannels, and quota value

|N̂m| = 2.

the FBSs’s coverage. In order to estimate optimality gap of the
proposed approach, we also compare the “proposed approach”
scheme with “centralized approach” that obtains an optimal
solution, in which user association, subchannel and power al-
locations are searched exhaustively. However, the comparison
is limited for the small number of FUEs (N = 8, M = 4, K
= 4, and |N̂m| = 2) due to the complexity of the “centralized
approach” scheme. As shown, when we increase the value of
the maximum power for each FUE, the average throughput of
the “centralized approach” and “proposed approach” schemes
increases. However, the values of all schemes are saturated as
the maximum power of each FUE become sufficiently large.
Specifically, the average throughput of the “without DIST-P”
scheme decreases when the maximum power is greater than
100 mW due to the increasing violation of the MBS protection
and minimum rate requirement of each FUE. Additionally,
the “without DIST-P” scheme reaches zero when the transmit
powers of FUEs are equal to 1 W. This is because the data
transmission of all FUEs in the PC phase violated constraints
(4) and (5). Hence, all proposals from UA and CA phases to
he PC phase are rejected and the data transmission of all FUEs
are interrupted by the CFM. The comparison shows that the
“proposed approach” scheme yields the solution close to that
of the “centralized approach” scheme, with a gap of 7.74%
for a network with a maximum transmit power of 100 mW.

VI. CONCLUSIONS

In this paper, a novel framework has been proposed to
jointly optimize user association and resource allocation in
the uplink cognitive femtocell network. In the considered
CFN, FBSs have been deployed to serve a set of FUEs by
reusing subchannels in a macrocell. The joint for the user
association, subchannel assignment, and power allocation have
been formulated as an optimization problem that maximizes
the overall uplink throughput while guaranteeing FBS over-
loading avoidance, data rate requirements of the served FUEs,
and MBS protection. To solve this problem, a distributed



framework based on the matching game has been proposed
to model and analyze the competitive behaviors among the
FUEs and FBSs. Using this framework, distributed algorithms
have been implemented to enable the CFN to make decisions
regarding user association, subchannel allocation, and transmit
power. The developed algorithms have been shown to con-
verge to stable matchings and exhibit a low computational
complexity. Simulation results have shown that the proposed
approach yields a performance improvement in terms of the
overall network throughput and outage probability with a low
computational complexity.

For the future work, the proposed framework in the scenario
without distinction between MUEs and FUEs can be consid-
ered. However, it leads to more coupled problems compared
to those in our considered scenario. In this scenario, the
network access modes needs to regulate how subscribed users
can associate with the macrocell network or CFN. Also, the
network access mode selection depends on strategies of the
network managers and mobile users (such as cost-based and
load balancing-based strategies).

APPENDIX

A. Proof of the Theorem 1

In the initialized state of each iteration τ , the FUEs that
have not yet joined any group Gk(τ − 1),∀k ∈ K are going
to new subsequent matchings at the UA, CA, and PC phases.
Given group formations Gk(τ − 1),∀k ∈ K, the interference
at FBSs on all subchannels is fixed. Hence, new preference
relations �(τ)

m,UA, �(τ)
n,UA, �(τ)

nm,CA, and �(τ)
km,CA in both the UA

and CA phases are determined.

Definition 5. A matching �UA is stable if it is individually
rational and there is no blocking pair or any (m,n) in the set
of acceptable pairs such that n prefers m to �UA (n) and m
prefers n to �UA (m).

Lemma 4. The association performed in the MATCH-UA
algorithm follows the preference relations �(τ)

m,UA and �(τ)
n,UA,

and leads to a stable matching in each iteration τ .

Proof. In any iteration τ , new preference relations of the
FUEs and FBSs are given by �(τ)

m,UA and �(τ)
n,UA, respectively.

Additionally, the quota and available subchannels at each FBS
in τ are given by N̂m and K̂m, respectively. We note that
only FUEs that are rejected by the CFM and UA phase in
iteration τ − 1 will be included in the UA phase at iteration
τ . Then, these FUEs will be processed in the MATCH-UA
algorithm. The FUEs that are matched by the CFM in iteration
τ − 1 will be kept in the preference relation �(τ)

m,UA of FBSs.
The MATCH-UA algorithm design is based on basic principles
of the deferred-acceptance algorithm and college admissions
model with responsive preferences [32], in which it is proved
that does not exist any blocking pair when the algorithm
terminates. Hence, the MATCH-UA algorithm produces a
stable matching µUA, where they are not blocked by any FUE-
FBS pair. Hence, the matching in the UA phase is a stable
matching.

Lemma 5. The allocation performed in the MATCH-CA
algorithm follows the preference relations �(τ)

mn,CA and �(τ)
km,CA

and leads to a stable matching in each iteration τ .

Proof. Following the stable matching in the UA phase, new
FUEs matched to the FBSs will join the CA phase at iteration
τ . Given the new preference relations �(τ)

nm,CA and �(τ)
km,CA of

FUEs and subchannels in the FBS, we consider the stability of
matchings based on the MATCH-CA algorithm at iteration τ .
In this phase, we also note that only the subchannels that are
unmatched by the CFM at iteration τ − 1 will be included
in the CA phase at iteration τ based on the MATCH-CA
algorithm. In addition, the FUEs that are matched by CFM
in iteration τ − 1 on the subchannel of the FBS will be kept
in the preference relation �(τ)

km,CA of the FBSs. We prove
Proposition 5 by contradiction. We define µm,CA as a matching
obtained by the MATCH-CA algorithm at any iteration τ of
JUCAP algorithm. Let us assume that FUE n = µ∗UA(m)
is not allocated to subchannel k of FBS m, but it has a
higher order in the preference relations. Hence, the (n, k) pair
will block µm,CA. However, since n �(τ)

km,CA n′, in which
n′ = µm,CA(k), subchannel k must select FUE n before the
algorithm terminates. As a result, the pair (n, k) will not
block µm,CA, which contradicts our assumption. Therefore,
matchings in the CA phase are stable when there are no
blocked pairs (n, k) at all FBSs m,∀m ∈M or any pair.

Hence, given a stable matching in the CA phase, the number
of new proposals from the FBSs for accessing subchannels is
fixed at iteration τ . Then, the subchannel assignment in the PC
phase can be considered as matching FUE-FBS (m,n) pairs
to subchannels k ∈ K, in which matching operations are based
on the ELGRA and DIST-P algorithms.

Definition 6. A matching for resource allocation in the PC
phase is weak Pareto optimal if there is no other matching
that can achieve a better sum-rate, where the inequality is
component-wise and strict for one pair (m,n).

Lemma 6. Given a proposal from the CA phase, the resource
allocation in the PC phase on each iteration τ is weak Pareto
optimal [39] under the proposals offered from the FBSs.

Proof. Let µPC be a matching obtained by the ELGRA and
DIST-P algorithms at any iteration τ of the JUCAP algorithm.
Let Rknm(µPC) be the data rate achieved by pair (n,m) for a
matching µPC given a set of proposals offered from FBSs on
subchannel k, where n = µ∗UA(m) and n = µ∗m,CA(k). Ad-
ditionally, we define φτPC(µPC) =

∑
(n,m)∈Gk,k∈KR

k
nm(µPC)

as the sum rate of all FUE-FBS pairs at iteration τ . On the
contrary, we define µ′PC as an arbitrary unstable outcome better
than µPC. Hence, we consider two scenarios:

1) Matching µ′PC is lack of individual rationality: If
subchannel k is not individually rational, then the CFM
can remove the pair (n,m) ∈ µ′PC(k) to improve the
utility on subchannel k, or

∑
(n,m)∪Gk Rknm(µ′PC(k)) <∑

Gk Rknm(µPC(k)).
2) Matching µ′PC is blocked: Whenever the matching µ′PC

is blocked by any pair ((n,m), k), the CFM strictly prefers
the FUE-FBS pair (n,m) to µ′PC(k), (n,m) ∈ Gk, and the



pair (n,m) strictly prefers subchannel k to µ′PC(n,m) = ∅.
In this case, the CFM will add the pair (n,m) to improve
the utility on subchannel k, or

∑
(n,m)∪Gk Rknm(µPC(k)) >∑

Gk Rknm(µ′PC(k)). Hence, the matching µPC(k)′ is replaced
by the new matching µPC(k).

Obviously, there is no outcome µ′PC better than the matching
µPC for both scenarios (1) and (2). Based on Definition 6, µPC
is a stable outcome or an optimal allocation and the proof
follows.

Hence, we obtain Lemmas 4, 5, and 6 that prove Theorem
1
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[2] D. López-Pérez, A. Valcarce, G. De La Roche, and J. Zhang, “OFDMA
femtocells: A roadmap on interference avoidance,” IEEE Communica-
tions Magazine, vol. 47, no. 9, pp. 41–48, 2009.

[3] L. Huang, G. Zhu, and X. Du, “Cognitive femtocell networks: an
opportunistic spectrum access for future indoor wireless coverage,” IEEE
Wireless Communications Magazine, vol. 20, no. 2, pp. 44–51, Apr.
2013.

[4] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks:
a survey,” IEEE, Communications Magazine, vol. 46, no. 9, pp. 59–67,
Sep. 2008.

[5] J. Zhang, G. De la Roche et al., Femtocells: technologies and deploy-
ment. Wiley Online Library, 2010.

[6] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim, “Interference man-
agement in ofdma femtocell networks: Issues and approaches,” IEEE,
Wireless Communications, vol. 19, no. 3, pp. 86–95, 2012.

[7] M. Rasti, M. Hasan, L. B. Le, and E. Hossain, “Distributed uplink power
control for multi-cell cognitive radio networks,” IEEE Transactions on
Communications, vol. 63, no. 3, pp. 628–642, 2015.

[8] M. Monemi, M. Rasti, and E. Hossain, “On Joint Power and Admission
Control in Underlay Cellular Cognitive Radio Networks,” IEEE Trans-
actions on Wireless Communications, vol. 14, no. 1, pp. 265–278, Jan
2015.

[9] X. Kang, Y.-C. Liang, and H. K. Garg, “Distributed power control for
spectrum-sharing femtocell networks using Stackelberg game,” in IEEE,
International Conference on Communications (ICC), Kyoto, Jun. 2011.

[10] Y. Sun, R. P. Jover, and X. Wang, “Uplink interference mitigation for
OFDMA femtocell networks,” IEEE Transactions on Wireless Commu-
nications, vol. 11, no. 2, pp. 614–625, 2012.

[11] H. Zhang, C. Jiang, X. Mao, and H.-H. Chen, “Interference-limited
resource optimization in cognitive femtocells with fairness and imperfect
spectrum sensing,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 3, pp. 1761–1771, 2016.

[12] V. N. Ha and L. B. Le, “Fair resource allocation for OFDMA femtocell
networks with macrocell protection,” IEEE Transactions on Vehicular
Technology, vol. 63, no. 3, pp. 1388–1401, 2014.

[13] J. Deng, R. Zhang, L. Song, Z. Han, G. Yang, and B. Jiao, “Joint power
control and subchannel allocation for OFDMA femtocell networks
using distributed auction game,” in IEEE, International Conference on
Wireless Communications & Signal Processing (WCSP), Huangshan,
Oct. 2012, pp. 1–6.

[14] T. LeAnh, N. Tran, S. Lee, E.-N. Huh, Z. Han, and C. S. Hong, “Dis-
tributed power and channel allocation for cognitive femtocell network
using a coalitional game in partition form approach,” IEEE Transactions
on Vehicular Technology (in press), 2016.

[15] H. Zhang, C. Jiang, N. Beaulieu, X. Chu, X. Wang, and T. Quek,
“Resource Allocation for Cognitive Small Cell Networks: A Cooperative
Bargaining Game Theoretic Approach,” IEEE Transactions on Wireless
Communications, vol. 14, no. 6, pp. 3481–3493, June 2015.

[16] C.-H. Ko and H.-Y. Wei, “On-demand resource-sharing mechanism
design in two-tier OFDMA femtocell networks,” IEEE Transactions on
Vehicular Technology, vol. 60, no. 3, pp. 1059–1071, 2011.

[17] L. B. Le, D. Niyato, E. Hossain, D. I. Kim, and D. T. Hoang, “QoS-aware
and energy-efficient resource management in OFDMA femtocells,” IEEE
Transactions on Wireless Communications, vol. 12, no. 1, pp. 180–194,
2013.

[18] J. Oueis and E. C. Strinati, “Uplink traffic in future mobile networks:
Pulling the alarm,” in International Conference on Cognitive Radio
Oriented Wireless Networks. Springer, 2016, pp. 583–593.

[19] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Large-scale
measurement and characterization of cellular machine-to-machine traf-
fic,” IEEE/ACM Transactions on Networking (TON), vol. 21, no. 6, pp.
1960–1973, 2013.

[20] Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, “To-
wards massive machine type cellular communications,” arXiv preprint
arXiv:1512.03452, 2015.

[21] V. Chandrasekhar and J. G. Andrews, “Uplink capacity and interfer-
ence avoidance for two-tier femtocell networks,” IEEE Transactions on
Wireless Communications, vol. 8, no. 7, pp. 3498–3509, July 2009.

[22] E. Yaacoub and Z. Dawy, “Proportional fair scheduling with probabilistic
interference avoidance in the uplink of multicell OFDMA systems,” in
2010 IEEE Globecom Workshops, Dec 2010, pp. 1202–1206.

[23] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: Fundamentals and Applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[24] S. Bayat, R. Louie, Z. Han, B. Vucetic, and Y. Li, “Distributed user as-
sociation and femtocell allocation in heterogeneous wireless networks,”
IEEE Transactions on Communications, vol. 62, no. 8, pp. 3027–3043,
Aug 2014.

[25] W. Saad, Z. Han, R. Zheng, M. Debbah, and H. V. Poor, “A college
admissions game for uplink user association in wireless small cell
networks,” in IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, April 2014, pp. 1096–1104.

[26] F. Tariq and L. S. Dooley, “Cognitive femtocell networks,” Cognitive
communications: distributed artificial intelligence (DAI) , regulatory
policy and economics, implementation. Wiley, NY, pp. 359–394, 2012.

[27] A. Aguilar-Garcia, R. Barco, S. Fortes, and P. Muñoz, “Load balancing
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