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Abstract—We consider the problem of joint congestion control and
power control with outage constraint in an interference-limited multihop
wireless network. We transform the original nonconvex problem into a
convex programming problem and develop a message-passing distributed
algorithm that can attain the global optimal source rate and link transmit
power. This algorithm however requires a larger control message size than
that of the conventional scheme, which increases network overheads. We
continue to develop a practical near-optimal distributed algorithm that
only requires local signal-to-interference ratio (SIR) measurement to limit
the size of the message. Numerical results show that both schemes have
nearly identical performance and outperform the conventional scheme.

Index Terms—Congestion control, convex optimization, distributed
algorithms, power control, utility maximization.

I. INTRODUCTION

In a wireless multihop network, congestion control and power
control have a mutual relationship. Congestion control regulates the
source rates to avoid overwhelming any link capacity, which depends
on the interference levels, which, in turn, are decided by link transmit
power control. Based on this relationship, Chiang [3] characterized
the first joint congestion control and power control (JCPC) problem
by solving a transformed convex optimization problem. By using the
gradient-based algorithm, the author showed that the optimal source
rate and link transmit power could be attained in a distributed fashion
with message passing. However, the solutions were optimally achieved
in a high signal-to-interference ratio (SIR) approximation sense
(link capacity approximation), and they are suboptimal in a general
sense [13].

Many works later considered different aspects of this JCPC prob-
lem. Ghasemi and Faez [6] studied a cross-layer problem of joint
congestion, media contention, and power control. Lee and Lim [9]
proposed a new window control algorithm for the congestion control
and a new power control algorithm to improve throughput and power
efficiency. Both of them, however, also employed link capacity approx-
imation. Long et al. [11] considered a cross-layer design of random
access and power control to adapt for the congestion states with a
proposed optimal algorithm, but their algorithm required complicated
convexification computation. Tran and Hong [14] tackled the noncon-
vexity of JCPC using a successive approximation method, which also
requires many computations due to the successive approximations.
Dogahe et al. [5] considered the queuing delay in the JCPC problem,
again with high SIR approximation.
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The aforementioned works also assumed slowly varying wireless
channels, implying that such algorithms must attain optimal solutions
before the fading state changes. In case of the fast fading channel,
the update rate must be fast enough to keep track of changing fading
states. This leads to extravagant overheads until the schemes collapse.
One solution for this issue is allowing transmission outages to occur
between successive updates; as a result, the updates can proceed on a
much slower time scale. This idea was first employed in [8] to solve
the centralized power control problem. The first work using this idea
to address the JCPC problem may have been [13]. However, this work
used the outage capacity, which is an approximated link capacity, to
implicitly include the outage constraint into their cross-layer design.
This outage capacity utilization results in the disappearance of the
SIR threshold, which is one of the most important parameters of
the outage constraint. Consequently, the network quality-of-service
(QoS) control, which can be characterized by tuning this parameter,
was lost.1

To overcome the limitations of the aforementioned works, we study
the JCPC problem without high SIR assumption. Additionally, we
employ an explicit outage constraint to battle with fast fading channels
and further to keep the SIR threshold alive for network QoS control.
After formulating this JCPC as an optimization problem, we prove its
convexity, which is not a trivial work due to the complex relationship
between interfering powers in the explicit outage constraint. Next, we
propose two message-passing distributed algorithms that solve this
convex problem. The first algorithm can attain the global optimal solu-
tions using a dual gradient algorithm. However, this scheme requires a
larger size of the control message than that of the conventional scheme
[3], which increases the network overhead. To overcome this issue, we
design a second algorithm, which is near optimal yet practical due to
its small size control messages as in [3]. Extensive numerical results
show that the gap between the optimal and near-optimal algorithms is
almost indistinguishable, and the second design demonstrates a faster
convergence rate than the first design. Both schemes also outperform
the suboptimal conventional scheme [3].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a wireless multihop network with L = {1, . . . , L}
logical links shared by S = {1, . . . , S} sources. We assume that each
source s emits a flow using a fixed set of links L(s) on its route. The
set of sources using link l is denoted by S(l) = {s| l ∈ L(s)}. The
operating ranges of the vectors of source rates x = [x1, . . . , xS ]T and
link transmit powers P = [P1, . . . , PL]T are denoted as X = {xs, s ∈
S| xmin

s ≤ xs ≤ xmax
s } and P = {Pl, l ∈ L| Pmin

l ≤ Pl ≤ Pmax
l },

respectively. Each source s always has data to transmit, and it obtains
utility Us(xs) when transmitting a flow at data rate xs. The utility
function Us(xs) is assumed to be increasing and strictly concave in
xs. A large class of user fairness can be characterized by the following
general α-fair utility function [12]:

Uα
s (xs) =

{
(1 − α)−1x1−α

s , if α ≥ 0, α �= 1

log xs, if α = 1.
(1)

For example, it provides proportional fairness with α = 1, harmonic
mean fairness with α = 2, and max-min fairness with α → ∞.

1See [4], which showed that a minimum success frame rate can be converted
to an appropriate SIR threshold for a specific modulation and coding scheme.
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We consider the code-division multiple-access model. The instanta-
neous capacity of link 1 ∈ L is described as cl(γl(P)) = W log(1 +
Kγl(P)), where W is the baseband bandwidth and K is a constant,
depending on modulation, coding scheme, and bit error rate (BER) [7].
Unless otherwise stated, we assume that W = K = 1 without loss of
generality. γl(P) is the instantaneous SIR of link l, which is defined
as γl(P) = PlGllFll/

∑
k �=l

PkGlkFlk + N0, where gain Glk repre-
sents a slow fading channel (e.g., log normal shadowing), gain Flk

models a fast fading channel from the transmitter on link k to the re-
ceiver on link l, and N0 is the thermal noise power at each receiver. We
assume a nonline-of-sight radio transmission environment. Hence, we
can employ a Rayleigh fading model, where exponential random vari-
ables Flk are i.i.d and their mean values are normalized to unity. Over
the considered time scale, Glk is assumed to be constant. Then, the cer-
tainty equivalent SIR is γ̄l(P) = E[PlGllFll]/E[

∑
k �=l

PkGlkFlk +

N0] = PlGll/
∑

k �=l
PkGlk + N0.

B. Problem Formulation: JCPC With an Explicit Outage Constraint

The JCPC with outage constraint can be originally formulated as
follows:

maximize
x∈X ,P∈P

∑
s

Us(xs) −
∑

l

Pl

subject to
∑

s∈S(l)

xs ≤ cl (γ̄l(P)) ∀l

Pr
[
γl ≤ γth

l

]
≤ ξl ∀l (2)

where cl(γ̄l(P)) = log(1 + γ̄l(P)), Pr[γl ≤ γth
l ] is the outage prob-

ability defined as the proportion of time that some SIR threshold
γth

l is not met for a sufficient reception at link l’s receiver, and
ξl ∈ (0, 1) is the outage probability threshold on link l. The objective
is to maximize the network utility while minimizing the total power.
For a Rayleigh fading channel, as in [8], the closed-form outage
probability is Pr[γl ≤ γth

l ] = 1 − exp(−(N0γ
th
l /PlGll)

∏
k �=l

(1 +

γth
l (PkGlk/PlGll))

−1. Then, the second constraint of problem (2)
can be rewritten as

∏
k �=l

(1 + γth
l (PkGlk/PlGll)) ≤ Ωl(Pl), where

Ωl(Pl) = exp(−N0γ
th
l /PlGll)/1 − ξl.

III. OPTIMAL ALGORITHM

Problem (2) is a nonconvex optimization problem. In this section,
we first transform (2) into an equivalent convex problem and design a
distributed optimal algorithm.

A. Equivalent Convex Formulation

We first denote new variables and sets P̂l = log Pl, x̂s = log xs,
X̂ = {x̂s ∀s ∈ S| log xmin

s ≤ x̂s ≤ log xmax
s }, ∧P = {P̂l ∀l ∈

L| log Pmin
l ≤ P̂l ≤ log Pmax

l }. We also denote γ̄l = γ̄l(P) and
ˆ̄γl = γ̄l(e

P̂) to simplify the notation. Then, problem (2) is transformed
as follows:

maximize
x̂∈X̂ ,P̂∈P̂

∑
s

Us(e
x̂s) −

∑
l

eP̂l

subject to log

⎛
⎝ ∑

s∈S(l)

ex̂s

⎞
⎠ ≤ log cl

(
ˆ̄γl

)
∀l

∑
k �=l

log

(
1 + eP̂k−P̂l

γth
l Glk

Gll

)
≤ log Ωl

(
eP̂l

)
∀l.

(3)

We assume that Us(exp(.)) is a concave function with a mild condition
as in [10]. Then, we have the following:

Theorem: Problem (3) is a convex optimization problem.
Proof: See Appendix A. �

B. Dual Decomposition and Optimal Solution

The Lagrangian of (3) can be presented as L(x̂, P̂, λ, ν) =
Lx̂(x̂, λ) + LP̂ (P̂, λ, ν), where Lx̂(x̂, λ) =

∑
s
Us(e

x̂s) − ∑
l
λl

log(
∑

s∈S(l)
ex̂s) and LP̂ (P̂, λ, ν) =

∑
l
(λl log cl(ˆ̄γl) + νl log Ωl

(eP̂l) − eP̂l − νl

∑
k �=l

log(1 + eP̂k−P̂l(γth
l Glk/Gll))). Here, λ =

[λ1, . . . , λL]T and ν = [ν1, . . . , νL]T are the Lagrange multipliers
of the first and second constraints. The partial dual functions can be
represented as

D1(λ) = max
x̂∈X̂

Lx̂(x̂, λ) (4)

D2(λ, ν) = max
P̂∈P̂

LP̂ (P̂, λ, ν). (5)

Proposition 1: The following source rate update solves the maxi-
mization problem (4):

xs(t + 1) =
[
U ′−1

s (λs(t))
]xmax

xmin
(6)

where U
′−1
s is the inverse function of the first derivative of the utility

function, [a]cb = max{min{a, c}, b}, and λs(t) =
∑

l∈L(s)
(λl(t)/∑

f∈S(l)
xf (t)).

Proof: See Appendix B. �
Proposition 2: The link power update (7), shown at the bottom

of the page, where δk(t) = λk(t)(1/ log(1 + γ̄k(t)))(γ̄k(t)/(1 +
γ̄k(t))), mk(t) = δk(t)(γ̄k(t)/GkkPk(t)), and m̃k(t) = γth

k /
GkkPk(t), solves the maximization problem (5).

Proof: See Appendix C. �
Because both the partial Lagrangians Lx̂(x̂, λ) and LP̂ (P̂, λ, ν)

are strictly concave, their optimal solutions are unique for a specific
(λ, ν). Dual functions D1(λ) and D2(λ, ν) are differentiable every-
where according to [1, Prop. 6.1.1], and there is no duality gap [1, Prop.
5.3.1]. By denoting the dual function D(λ, ν) = D1(λ) + D2(λ, ν),
we can apply the projected gradient method to solve the dual problem
min(λ,ν)≥0 D(λ, ν) using the dual variable updates as follows:

λl(t + 1) = [λl(t) − κ(t)gl]
(t)

with gl(t) = log cl (γ̄l(t)) − log

⎛
⎝ ∑

s∈S(l)

xs(t)

⎞
⎠ (8)

Pl(t + 1) =

[
δl(t) − νl(t)m̃l(t)

N0
log(1−ξl)

1 +
∑

k �=l
(Gklmk(t) + νk(t)Gklm̃k(t)1 + Gklm̃k(t)Pl(t))

]Pmax

Pmin

(7)
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νl(t + 1) = [νl(t) − κ(t)hl(t)]
+

with hl(t) = log Ωl (Pl(t)) −
∑
k �=l

log

(
1 + γth

l

GlkPk(t)

GllPl(t)

)
. (9)

Here, [a]+ = max{a, 0}, κ(t) is the positive step size, and vectors
g(t) = [g1(t), . . . , gL(t)]T and h(t) = [h1(t), . . . , hL(t)]T are gra-
dients of dual function D(λ, ν) with respect to λ and ν .

We propose an optimal JCPC with outage constraint algorithm as
follows:

Algorithm 1: Optimal JCPC with an Outage Constraint
1) Initialize with any {λ(0), ν(0)} ≥ 0.
2) Repeat until converge to the global optimal

{x∗(λ∗),P∗(λ∗, ν∗)}: with {λ(t), ν(t)} available at time t, the
source rate and link transmit power update {x(t + 1),P(t + 1)} for
congestion control and power control using (6) and (7), respectively;
then, each link updates {λ(t + 1), ν(t + 1)} using (8) and (9),
respectively.

We address the convergence of Algorithm 1 in the following
theorem:

Theorem 2: For any initial {λ(0), ν(0)} ≥ 0, the updates generated
via Algorithm 1 converge to the global optimal {x∗(λ∗),P∗(λ∗, ν∗)}
if the step size satisfies

∑∞
t=0

κ(t)2 < ∞ and
∑∞

t=0
κ(t) → ∞.

Proof: See Appendix D. �
Remarks:

1) Congestion control can be distributively implemented. The
destination sends a message back to the source to adjust
its rate according to (6), where the message accumulates
(λl(t)/

∑
f∈S(l)

xf (t)) of every intermediate link l along its
path to produce a total price λs(t) at source node s.

2) Link power can also be updated in a distributed fashion through
message passing, analogous to the algorithm in [3]. Each re-
ceiver of link k broadcasts its control message containing three
real value fields, i.e., mk(t), m̃k(t), and νk(t). Each transmitter
of link l then receives these values, estimates Gkl by using the
training sequences, and updates its power according to (7).

3) The λ(t) update in (8) only needs the link’s local information,
including the ingress rate and SIR measurement.

4) The ν(t) update in (9) requires the individual received powers
of other interfering transmitters. We can reserve the fourth field
containing Pk(t) in the control message broadcast by link k’s
receiver.

IV. NEAR-OPTIMAL ALGORITHM

Due to the explicit outage constraint nature of (3), the messages
broadcast by receivers contain much information, causing the overhead
and energy consumption increase for decoding at transmitters. In this
section, we eliminate this issue by proposing a near-optimal scheme.

Using the upper and lower bounds on the outage probability derived
in [8], we apply them to the outage constraint as Pr[γl ≤ γth

l ] ≤
1 − exp(−(γth

l /γ̄l)) ≤ ξl and (γth
l /γ̄l + γth

l ) ≤ Pr[γl ≤ γth
l ] ≤ ξl,

which correspond to these SIR constraints γ̄l ≥ −(γth
l / log(1 − ξl))

(upper bound) and γ̄l ≥ γth
l ((1/ξl) − 1) (lower bound), respectively.

Hence, the second constraint of problem (2) can be approximately
replaced by γ̄l ≥ ηl,, where ηl is either of those two constants. We
have a new optimization problem after changing variables, i.e.,

maximize
x̂∈X̂ ,P̂∈P̂

∑
s

Us(e
x̂s) −

∑
l

eP̂l

subject to log

⎛
⎝ ∑

s∈S(l)

ex̂s

⎞
⎠ ≤ log cl(ˆ̄γl)

∀l − log ˆ̄γl ≤ − log ηl ∀l. (10)

This problem is also a convex programming problem. While the
objective function and the first constraint are the same as in the con-
vex problem (3), the second constraint − log ˆ̄γl = − log(Glle

P̂l) +

log(
∑

k �=l
GlkeP̂k + N0) is a convex function due to the sum

of linear and log-sum-exp terms. The partial Lagrangians of
(10) are Lx̂(x̂, λ) =

∑
s
Us(e

x̂s) − ∑
l
λl log(

∑
s∈S(l)

ex̂s) and

LP̂ (P̂, λ, ν) =
∑

l
(λl log cl(ˆ̄γl) + νl log ˆ̄γl − eP̂l). We see that the

congestion control mechanism is the same as Algorithm 1. We focus
on the power control in the following result:

Proposition 3: The following link power update solves the maxi-
mization problem (5):

Pl(t + 1) =

[
δl(t) + νl(t)

1 +
∑

k �=l
Gklmk(t)

]Pmax

Pmin

(11)

where δk(t) = λk(t)(1/ log(1 + γ̄k(t)))(γ̄k(t)/(1 + γ̄k(t))), and
mk(t) = (δk(t) + νk(t))(γ̄k(t)/GkkPk(t)).

Proof: The proof is similar to that of Proposition 2. We skip it
due to the limited space. �

Using the projected gradient algorithm to solve the dual problem,
dual variables update as follows:

λl(t + 1) =

⎡
⎣λl(t) − κ(t)

⎛
⎝− log

⎛
⎝ ∑

s∈S(l)

xs(t)

⎞
⎠+ log cl(γ̄l(t))

⎞
⎠

⎤
⎦

+

(12)

νl(t + 1) = [νl(t) − κ(t) (log γ̄l(t) − log ηl)]
+ . (13)

We design the near-optimal algorithm (due to the constraint approx-
imation) as follows:

Algorithm 2: Near-Optimal JCPC with an Outage Constraint
1) Initialize with any {λ(0), ν(0)} ≥ 0
2) Repeat until converge to the global optimal

{x∗(λ∗),P∗(λ∗, ν∗)}: with {λ(t), ν(t)} available at time t, the
source rate and link transmit power update {x(t + 1),P(t + 1)} for
congestion control and power control using (6) and (11), respectively;
then, each link updates {λ(t + 1), ν(t + 1)} using (12) and (13),
respectively.

The convergence of Algorithm 2 is described by the following
theorem, which can be proved in a similar manner as Theorem 2;
hence, it is omitted due to the limited space.

Theorem 3: For any initial {λ(0), ν(0)} ≥ 0, the updates generated
via Algorithm 2 converge to the global optimal {x∗(λ∗),P∗(λ∗, ν∗)}
if the step size satisfies

∑∞
t=0

κ(t)2 < ∞ and
∑∞

t=0
κ(t) → ∞.

Remarks:

1) The congestion control mechanism is the same as in
Algorithm 1.

2) Link power control (11) is much more simplified than that
of Algorithm 1, where the control message broadcast by each
receiver of link k only contains mk(t) with locally measurable
quantities.

3) ν(t) update in (13) requires only its link’s local SIR
measurement.
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Fig. 1. Network topology with four flows and five nodes equidistantly placed.

TABLE I
CONVERGENCE SPEED COMPARISON

V. NUMERICAL RESULTS

A. Simulation Setting

We consider a network topology as in Fig. 1 with four flows and
five nodes equidistantly placed at d meters. Baseband bandwidth W
is set to 32 kHz, and we use K = −1.5/ log(5 BER) with BER =
10−3 for adaptive MQAM modulation [7]. The slow fading channel
gain is assumed to be h(d) = ho(d/100)−4, where ho is a reference
channel gain at a distance of 100 m. The maximum power, noise, and
ho are selected, so that the average receive SNR at 100 m is 30 dB.
We choose Pmin

l = 1 mW and Pmax
l = 100 mW, whereas xmin

s = 0,
and xmax

s is dynamically adjusted with respect to link capacities. The
step sizes are chosen to be 0.01/t. The α-fair utility function (1) is set
to all users, which means that congestion control (6) is xs(t + 1) =

[λs(t)
−(1/α)]xmax

xmin
. Since inner links suffer more interference than do

outer links, we set the outage probability thresholds ξl of link 2 and
link 3 to 0.3 and those of link 1 and link 4 to 0.2. The SIR thresholds
γth

l of the four links are set to (0.6 0.2 0.2 0.6) dB. These are the
maximal threshold values with which our simulation can converge to
an optimal feasible point. For any thresholds larger than these values,
link powers converge to the boundary values (Pmin

l or Pmax
l ).

B. Optimal Gap

We investigate the impact of utility parameter α on the network per-
formance. This parameter can act as a knob to control the tradeoff be-
tween network efficiency and fairness in a general NUM problem [10].
We fix d = 80 m and vary α from 1 to 10 to compare the network effi-
ciency (objective value) and fairness, where we use the Jain’s fairness
index as the standard fairness measurement: (

∑
s
xs)

2/(S
∑

s
x2

s).
As shown in Fig. 2, when α increases, the objective value achieves
the maximum value at α = 1.5 and then becomes less efficient. The
fairness of the system increases when α increases. We observe from
Fig. 2(a) that the performances of Algorithm 1 and Algorithm 2
with upper and lower bounds are almost indistinguishable due to the
tight outage probability bounds. Moreover, both algorithms clearly
outperform the conventional scheme [3], which spent higher power
transmission due to the high SIR approximation. From Fig. 2(b), all of
the compared schemes achieve nearly the same fairness performance.
This can be explained that they are in the same manner of proportional
allocation of congestion control (i.e., all schemes use the same update
(6) for solving congestion control).

C. Algorithm Convergence

The criterion used to evaluate the convergence speed is
maxl(|Pl(t) − P

(t−1)
l |/P

(t−1)
l ) < ε, where ε is an arbitrary small

number. We fix α = 1 (i.e., Us(xs) = log xs, provided the propor-
tional fairness, which is a well-known fairness criterion in telecommu-
nication literature) and d = 80 m for these scenarios. Table I shows the

Fig. 2. Impact of a variable utility parameter α on the network efficiency and
fairness of Algorithm 1 (optimal), Algorithm 2 with lower bound (near-optimal
lb) and upper bound (near-optimal ub) SIR constraints, and Chiang’s algorithm
(high SIR approximation). (a) Objective value. (b) Jain’s fairness index.

average number of iterations over 100 realizations with various values
of ε. The convergence speed of the near-optimal algorithm is the same
for both the upper bound and lower bound and is uniformly presented
as Algorithm 2. We see that the near-optimal scheme converges
faster than does the optimal scheme. This is a significant point, as
Algorithm 2, which can achieve a near-optimal solution with smaller
control message size and faster convergence, would be efficiently
practical. Fig. 3 shows a convergence realization of source rates, link
powers, and outage probabilities of Algorithm 1. The convergence of
Algorithm 2 is almost similar to that of Algorithm 1, except that its
power control is somewhat more aggressive due to the constraint
approximation; hence, it is not shown due to the limited space.
The outage probabilities of both schemes also converge to the
desired values.

VI. CONCLUSION

We have reconsidered joint congestion control and power control
in wireless multihop networks with explicit outage constraint. The
first proposed algorithm is optimal, but its control message contains
a large amount of information. The second algorithm is near optimal
yet practical because it has small size control messages to reduce
overheads. Numerical experiments have showed that the network
performances of both schemes were nearly identical and outperformed
the conventional scheme, and the near-optimal scheme had a faster
convergence speed.

APPENDIX A
PROOF OF THEOREM 1

We first show the convexity of the first constraint. It is clear that
log(

∑
s∈S(l)

ex̂s) is convex due to the log-sum-exponent function.
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Fig. 3. Convergence of Algorithm 1. (a) Flow rates. (b) Link powers. (c) Outage probabilities.

Consider that log cl(ˆ̄γl) = log(log(1 + ˆ̄γl)), which can be repre-
sented as a composition function u(v(ˆ̄γl)), where u(y) = log
(log(1 + ey)), y ∈ R, and v(ˆ̄γl) = log(ˆ̄γl). We have (∂u(y)/∂y) =
(ey/(1 + ey) log(1 + ey)) ≥ 0, and (∂2u(y)/∂y2) = (ey(log(1 +
ey) − ey)/(1 + ey)2 log2(1 + ey)) ≤ 0 due to z ≥ log(1 + z) ∀z ≥
0. Therefore, u(y) is nondecreasing and concave in y ∈ R. v(ˆ̄γl) is
clearly concave. We conclude that u(v(ˆ̄γl)) is concave due to the
composition property (see [2, p. 84]).

Next, we will prove that fl(P̂)
Δ
=

∑
k �=l

log(1 + eP̂k−P̂l(γth
l Glk/

Gll)) is a convex function because log Ωl(e
P̂l) is a concave function

of P̂l. Denoting zk = (eP̂k−P̂l(γth
l Glk/Gll)/(1 + eP̂k−P̂l(γth

l Glk/

Gll))
2) > 0, we have the following derivatives for link l: (∂2fl(P̂)/

∂P̂ 2
l ) =

∑
k �=l

zk; for any link j �= l: (∂2fl(P̂)/∂P̂l∂P̂j) = −zj ,

∂2fl(P̂)/∂P̂ 2
j ) = zj , (∂2fl(P̂)/∂P̂j∂P̂l) = ∂2fl(P̂)/∂P̂l∂P̂j ; and

for i �= l, j: (∂2fl(P̂)/∂P̂j∂P̂i) = 0. The Hessian matrix ∇2fl(P̂)
can be shown as follows:

∇2fl(P̂) =

⎛
⎜⎜⎜⎜⎝

∑L−1

k=1,k �=l
zk −z1 −z2 · · · −zL−1

−z1 z1 0 · · · 0
−z2 0 z2 · · · 0

...
...

...
. . .

...
−zL−1 0 0 · · · zL−1

⎞
⎟⎟⎟⎟⎠ .

Then, with all v ∈ R
L, we have vT∇2fl(P̂)v =

∑L−1

k=1
zk(v1 −

vk+1)
2 ≥ 0, which shows that ∇2fl(P̂) is a positive semidefinite

matrix.

APPENDIX B
PROOF OF PROPOSITION 1

Using first-order optimal condition, we have (∂Lx̂(x̂, λ)/∂x̂s) =
0 = ex̂s(U ′

s(e
x̂s) − ∑

l∈L(s)
(λl/

∑
f∈S(l)

ex̂f )). The result is then
obtained via transformation back to the x space.

APPENDIX C
PROOF OF PROPOSITION 2

The partial Lagrangian LP̂ (P̂, λ, ν) can be rewritten as

LP̂ (P̂, λ, ν) =
∑

l

(
λl log cl

(
ˆ̄γl

)
+ νl log Ωl

(
eP̂l

)
− eP̂l

)

−
∑

l

∑
k �=l

νk log

(
1 + eP̂l−P̂k

γth
l Gkl

Gkk

)
. (14)

This results in these following derivatives: (∂/∂P̂l)(
∑

l
λl ×

log cl(ˆ̄γl)) = λl(∂(log cl(ˆ̄γl))/∂ ˆ̄γl)(∂ ˆ̄γl/∂P̂l) +
∑

k �=l
λk(∂ ×

(log ck(ˆ̄γk))/∂ ˆ̄γk)(∂ ˆ̄γk/∂P̂l) = λl(1/ log(1 + ˆ̄γl))(ˆ̄γl/1 + ˆ̄γl) +∑
k �=l

λk(1/ log(1 + ˆ̄γk))(1/1 + ˆ̄γk)(−(ˆ̄γ
2
k/GkkeP̂k)Gkle

P̂l); (∂/

∂P̂l)(
∑

l

∑
k �=l

νk log(1 + eP̂l−P̂k(γth
l Gkl/Gkk))) =

∑
k �=l

νk ×
(eP̂l−P̂k(γth

l Gkl/Gkk)/1 + eP̂l−P̂k(γth
l Gkl/Gkk)); (∂/∂P̂l) ×

(
∑

l
νl log Ωl(e

P̂l)) = −νl(γ
th
l /Glle

P̂l)(N0/ log(1 − ξl)). Substi-

tuting these derivatives and (∂(eP̂l)/∂P̂l) = eP̂l into (∂LP̂ (P̂, λ, ν)/

∂P̂l) = 0, the result is obtained after transformation back to P space.

APPENDIX D
PROOF OF THEOREM D

Using ‖.‖ to denote the Euclidean norm, we use the Lyapunov func-
tion V (λ, ν) = ‖λ − λ∗‖2 + ‖ν − ν∗‖2, where (λ∗, ν∗) is the opti-
mal dual solutions. From (8) and (9), and the fact that (max{a, 0})2 ≤
a2, we have

‖λ(t + 1) − λ∗‖2 ≤ ‖λ(t) − λ∗‖2

− 2κ(t) [λ(t) − λ∗]T g(t) + κ(t)2 ‖g(t)‖2 (15)

‖ν(t + 1) − ν∗‖2 ≤ ‖ν(t) − ν∗‖2

− 2κ(t) [ν(t) − ν∗]T h(t) + κ(t)2 ‖h(t)‖2 . (16)

Since xs(t) and Pl(t) are bounded for all s, l, and t, ‖g(t)‖2 and
‖h(t)‖2 are also bounded from (8) and (9). Supposing that ‖g(t)‖2 +
h(t)‖2 ≤ C, from (15) and (16), we have

V (λ(t + 1), ν(t + 1)) ≤ V (λ(t), ν(t)) + κ(t)2C

− 2κ(t)
(
[λ(t) − λ∗]T g(t) + [ν(t) − ν∗]T h(t)

)
.

Employing telescoping sums, we have

V (λ(t + 1), ν(t + 1)) ≤ V (λ(0), ν(0)) + C

t∑
τ=0

κ(τ)2

−2
t∑

τ=0

κ(τ)
(
[λ(τ) − λ∗]T g(τ) + [ν(τ) − ν∗]T h(τ)

)
. (17)

Note that C
∑∞

τ=0
κ(τ)2 < ∞; hence,

∑t

τ=0
κ(τ)([λ(τ) − λ∗]T ×

g(τ) + [ν(τ) − ν∗]T h(τ)) < ∞. We also have [λ(τ) − λ∗]T ×
g(τ) + [ν(τ) − ν∗]T h(τ) ≥ D(λ, ν) − D(λ∗, ν∗) ≥ 0. Hence,
due to the condition

∑∞
τ=0

κ(τ) = ∞, there must exist a subsequence
{tn} such that lim

n→∞
[λ(tn) − λ∗]T g(tn) + [ν(tn) − ν∗]T h(tn) =

0. Since λ(tn) and ν(tn) are bounded sequences, there exist limit
points λo and νo such that λ(tn) → λo and ν(tn) → νo as n → ∞.
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Then, for any ε > 0, there exists N such that, for all n ≥ N , we have
[λ(tn) − λ∗]T g(tn) + [ν(tn) − ν∗]T h(tn) < ε, which leads to

D(λ∗, ν∗) ≥ D (λ(tn), ν(tn)) + [λ∗ − λ(tn)]T g(tn)

+ [ν∗ − ν(tn)]T h(tn) ≥ D (λ(tn), ν(tn)) − ε.

Since D(λ(t), ν(t)) is continuous, we have D(λ∗, ν∗) ≥
D(λo , νo) − ε. Since this is true for all ε and the fact that
D(λ∗, ν∗) ≤ D(λo , νo), we must have D(λ∗, ν∗) = D(λo , νo).
Hence, (λo , νo) is also an optimal point of D(λ, ν). Replacing
(λo , νo) by (λ∗, ν∗), and summing over t > tn, from (17)

V (λ(t + 1), ν(t + 1)) ≤ V (λ(tn), ν(tn)) + C

t∑
τ=tn+1

κ(τ)2.

(18)

Since
∑t

τ=tn+1
κ(τ)2 → 0 as n → ∞, we have limt→∞ V (λ(t),

ν(t)) ≤ limn→∞ V (λ(tn), ν(tn)) = 0, which shows that (λ(t),
ν(t)) → (λ∗, ν∗) as t → ∞. Hence, the primal optimal points
x∗(λ∗) and P∗(λ∗, ν∗) are achieved due to the zero-duality gap.
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Low-Complexity Near-Optimum Multiple-Symbol
Differential Detection of DAPSK Based on

Iterative Amplitude/Phase Processing

Li Wang, Member, IEEE, and Lajos Hanzo, Fellow, IEEE

Abstract—Differentially encoded and noncoherently detected trans-
ceivers exhibit low complexity since they dispense with a complex channel
estimation. In pursuit of high bandwidth efficiency, differential amplitude/
phase (A/P)-shift keying (DAPSK) was devised using constellations of
multiple concentric rings. To increase resilience against the typical
high-Doppler-induced performance degradation of DAPSK and/or to en-
hance the maximum achievable error-free transmission rate for DAPSK-
modulated systems, multiple-symbol differential detection (MSDD) may
be invoked. However, the complexity of the maximum a posteriori (MAP)
MSDD exponentially increases with the detection window size and hence
may become excessive upon increasing the window size, particularly in
the context of an iterative detection-aided channel-coded system. To cir-
cumvent this excessive complexity, we conceive a decomposed two-stage
iterative A/P detection framework, where the challenge of having a
nonconstant-modulus constellation is tackled with the aid of a specifically
designed information exchange between the independent A/P detection
stages, thus allowing the incorporation of reduced-complexity sphere
detection (SD). Consequently, a near-MAP-MSDD performance can be
achieved at significantly reduced complexity, which may be five orders
of magnitude lower than that of the traditional MAP-MSDD in the
16-DAPSK scenario that was considered.

Index Terms—Differential amplitude/phase (A/P)-shift keying
(DAPSK), multiple symbol differential detection, quadrature amplitude
modulation (QAM).

I. INTRODUCTION

Future wireless communications will have to support a high grade
of mobility. The major candidates for the next generation of broadband
wireless access systems, such as Third-Generation Partnership Project
Long-Term Evolution and IEEE 802.16m, are expected to deliver a
data rate of at least 100 Mb/s for high-velocity mobile users (up to
350 km/h) [1], [2]. Differential phase-shift keying (DPSK) relying on
low-complexity noncoherent detection constitutes an attractive solu-
tion for high-mobility wireless communications, particularly in sce-
narios such as cooperative communications, since it is robust against
the phase ambiguities induced by rapid fading while dispensing with a
channel estimation for mobile-to-mobile links. Thus, the employment
of pilot symbols may be avoided in differentially encoded and non-
coherently detected schemes. Differential amplitude/phase (A/P)-shift
keying (DAPSK) [3], [4]—also known as star quadrature amplitude
modulation (star-QAM)—has received substantial research attention
from the communication community as a benefit of its low-complexity
detection and its low peak-to-mean power, as compared with the
maximum–minimum distance square-QAM constellation. Basically,
DAPSK expands the single-ring constellation of the traditional DPSK
to multiple amplitude rings; thus, the information bits are mapped to
both the A/P differences between successively transmitted symbols.
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