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Joint Rate and Power Control in Wireless Network:
A Novel Successive Approximations Method

Nguyen H. Tran, Student Member, IEEE, and Choong Seon Hong, Member, IEEE

Abstract— The conventional method of joint rate and power
control (JRPC) relies on high signal-to-interference ratio (SIR)
assumption which achieves only suboptimal results. By using a
novel successive convex approximations method, we can attain
the global optimal source rates and link powers in a distributed
fashion exploiting message passing. Through simulations, our
method converges faster than the previous work based on
logarithm successive convex approximations.

Index Terms—Utility maximization, congestion control and
power allocation, distributed algorithms.

I. INTRODUCTION

IN wireless network, the rate and power control has a mutual
relationship, where rate control regulates the source rates

to avoid overwhelming any link capacity which depends on
interference levels, which in turn decided by power control
policy. The work in [2] first characterized the JRPC problem
through solving a transformed convex optimization problem.
By using the gradient-based algorithm, the author showed that
optimal rate and power allocation could be achieved in a high-
SIR approximation sense; however it is suboptimal in the
general case [5]. Also in [5], a generalized convexity has been
established for the same optimization problem which allowed
them to propose an algorithm named Alg. A that can achieve a
globally optimal solution through messaging passing without
high-SIR assumption. Due to the complicated convexification,
however the rate allocation of Alg. A with explicit message
passing no longer preserves the existing TCP stack like that
of [2], which makes it less favorable. To take into account
the TCP stack preserving, they continued propose an Alg. B
employing a technique called logarithmic successive convex
approximations.

To avoid high-SIR assumption yet preserve TCP stack, in
this letter we propose another novel successive convex approx-
imations method to iteratively transform the original noncon-
vex problem of JRPC into approximated convex problem, then
the global optimal solution can converge distributively with
message passing. Simulation results show that our method
converge faster than Alg. B.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a wireless multihop network with ℒ =
{1, 2, . . . , 𝐿} logical links shared by 𝒮 = {1, 2, . . . , 𝑆}
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sources. Each source 𝑠 using a fixed set of links 𝐿(𝑠) on
its route has a utility 𝑈𝑠(𝑥𝑠), a function of the flow rate 𝑥𝑠,
which is assumed to be increasing and strictly concave. We use
the similar CDMA physical model of [2] where simultaneous
communications can happen, which undergoes the multiple-
access interference. The instantaneous capacity of link 𝑙 ∈ ℒ
is a global and nonlinear function of transmit power vector P

𝑐𝑙(P) = 𝑊 log(1 +𝐾SIR𝑙(P)), (1)

where 𝑊 is the baseband bandwidth and 𝐾 is a constant
depending on modulation, coding scheme and bit-error rate
(BER). The SIR𝑙(P) is defined as

SIR𝑙(P) =
𝑃𝑙𝐺𝑙𝑙∑

𝑘 ∕=𝑙 𝑃𝑘𝐺𝑙𝑘 + 𝑛𝑙
, (2)

where 𝐺𝑙𝑘 is the instantaneous channel gain from the transmit-
ter on link 𝑘 to the receiver on link 𝑙 and 𝑛𝑙 is the noise power
at receiver of link 𝑙. The JRPC problem can be formulated as
the following nonconvex problem

maximize
∑
𝑠

𝑈𝑠(𝑥𝑠) (3)

subject to
∑

𝑠:𝑙∈𝐿(𝑠)

𝑥𝑠 ≤ 𝑐𝑙(P), ∀𝑙

where the nonnegative optimization variables are source rates
vector x and power vector P. Different TCP protocols solve
for different 𝑈𝑠(𝑥𝑠). For example, 𝑈𝑠(𝑥𝑠) = 𝛼𝑠𝑑𝑠 log 𝑥𝑠 is
shown to be associated with TCP Vegas, where 𝛼𝑠 is the Vegas
parameter and 𝑑𝑠 is the propagation delay [3].

III. A NOVEL SUCCESSIVE CONVEX APPROXIMATIONS

METHOD

A. Approximated Convex Optimization Problem

In order to turn the original nonconvex problem (3) to an
approximated convex problem, we begin to form a new lower
bound approximation to the constraint (3)∑

𝑠:𝑙∈𝐿(𝑠)

𝑥𝑠 ≤ 𝑐𝑙(P) ≤ 𝑐𝑙(P). (4)

Henceforth, we assume 𝑊 = 𝐾 = 1 without loss of
generality. We note that 𝑐𝑙(P) can be rewritten in the form

𝑐𝑙(P) = log

(∑
𝑘∈ℒ

𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙

)
− log

⎛
⎝∑

𝑘 ∕=𝑙

𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙

⎞
⎠

Making use of arithmetic-geometric mean inequality, where
it states that

∑
𝑖 𝜃𝑖𝑢𝑖 ≥

∏
𝑖 𝑢

𝜃𝑖
𝑖 with 𝑢𝑖 ≥ 0, 𝜃𝑖 > 0 ∀𝑖 and∑

𝑖 𝜃𝑖 = 1, we have a similar inequality
∑

𝑖 𝑣𝑖 ≥
∏

𝑖(𝑣𝑖/𝜃𝑖)
𝜃𝑖
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by letting 𝑣𝑖 = 𝜃𝑖𝑢𝑖, and the equality happens when 𝜃𝑖 =
𝑣𝑖/
∑

𝑖 𝑣𝑖.
Result 1: For each link 𝑙 with a vector 𝜽𝑙 =

[𝜃𝑙1, 𝜃
𝑙
2, . . . , 𝜃

𝑙
𝐿+1]

∑
𝑘∈ℒ

𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙 ≥
𝐿∏

𝑘=1

(
𝐺𝑙𝑘𝑃𝑘

𝜃𝑙𝑘

)𝜃𝑙
𝑘

(
𝑛𝑙

𝜃𝑙𝐿+1

)𝜃𝑙
𝐿+1

, (5)

and the equality happens when

𝜃𝑙𝑘 =
𝐺𝑙𝑘𝑃𝑘∑

𝑘∈ℒ 𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙
, 𝑘 = 1, . . . , 𝐿

𝜃𝑙𝐿+1 =
𝑛𝑙∑

𝑘∈ℒ 𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙
(6)

Because log(.) is an increasing function of positive variables,
by taking logarithm on both sides of (5) we have

log

(∑
𝑘∈ℒ

𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙

)
≥

𝐿∑
𝑘=1

𝜃𝑙𝑘 log

(
𝐺𝑙𝑘𝑃𝑘

𝜃𝑙𝑘

)
+ 𝜃𝑙𝐿+1 log

(
𝑛𝑙

𝜃𝑙𝐿+1

)
.
= 𝑓(P, 𝜽𝑙) (7)

Letting 𝑐𝑙(P, 𝜽𝑙) = 𝑓(P, 𝜽𝑙) − log
(∑

𝑘 ∕=𝑙 𝐺𝑙𝑘𝑃𝑘 + 𝑛𝑙

)
, we

have

𝑐𝑙(P, 𝜽𝑙) ≤ 𝑐𝑙(P) (8)

and the equality happens when (6) holds.
Letting 𝑃𝑙 = log𝑃𝑙, it is easy to see that

𝑓(P̂, 𝜽𝑙) =
𝐿∑

𝑘=1

𝜃𝑙𝑘𝑃𝑘 +
𝐿∑

𝑘=1

𝜃𝑙𝑘 log

(
𝐺𝑙𝑘

𝜃𝑙𝑘

)
+ 𝜃𝑙𝐿+1 log

(
𝑛𝑙

𝜃𝑙𝐿+1

)

is a linear function of P̂, so

𝑐𝑙(P̂, 𝜽𝑙) = 𝑓(P̂, 𝜽𝑙)− log

⎛
⎝∑

𝑘 ∕=𝑙

𝐺𝑙𝑘𝑒
𝑃𝑘 + 𝑛𝑙

⎞
⎠ (9)

is a concave function of P̂ (recall that log-sum-exponent
is convex). We have the approximated convex optimization
problem of the original one (3) with variables x and P̂ (𝜽𝑙 is
fixed) as following

maximize
∑
𝑠

𝑈𝑠(𝑥𝑠) (10)

subject to
∑

𝑠:𝑙∈𝐿(𝑠)

𝑥𝑠 ≤ 𝑐𝑙(P̂, 𝜽𝑙), ∀𝑙

B. Optimal Solution of Approximated Convex Problem

The Lagrangian of (10) with dual variable vector (i.e.
congestion control price) 𝝀 = (𝜆1, 𝜆2 . . . 𝜆𝐿) is 𝐿(x, P̂, 𝜆) =
(
∑

𝑠 𝑈(𝑥𝑠)−
∑

𝑙 𝜆𝑙

∑
𝑠:𝑙∈𝐿(𝑠) 𝑥𝑠) +

∑
𝑙 𝜆𝑙𝑐𝑙(P̂). This can be

decomposed into two separate maximization problems in order
to find the saddle points of the Lagrangian

max
x

⎧⎨
⎩𝐿𝑥(x,𝝀) =

∑
𝑠

𝑈(𝑥𝑠)−
∑
𝑠

∑
𝑙∈𝐿(𝑠)

𝜆𝑙𝑥𝑠

⎫⎬
⎭ (11)

max
P̂

{
𝐿𝑃 (P̂,𝝀) =

∑
𝑙

𝜆𝑙𝑐𝑙(P̂, 𝜽𝑙)

}
(12)

The maximization (11) is the conventional rate control prob-
lem which is implicitly solved by the congestion control
mechanism for different 𝑈𝑠 [2], hence preserving the existing
TCP stack. The second maximization (12) is the power control
problem. And the dual problem of (10) is

min
𝝀≥0

(
max
x

𝐿𝑥(x,𝝀) + max
P̂

𝐿𝑃 (P̂,𝝀)

)
(13)

With the utility’s assumption, Slater condition holds leading
to strong duality [1]. We have the following result.

Result 2: The optimal solution (x∗,P∗,𝝀∗) can be
achieved if the variables update iteratively as following until
convergence
Rate control: The source rate updates

𝑥(𝑡+1)
𝑠 = 𝑈

′−1
𝑠

⎛
⎝ ∑

𝑙∈𝐿(𝑠)

𝜆
(𝑡)
𝑙

⎞
⎠ (14)

, where 𝑈
′−1
𝑠 is the inverse of the first derivative of utility.

Power control: The link power updates

𝑃
(𝑡+1)
𝑙 =

𝜆
(𝑡)
𝑙 𝜃𝑙𝑙∑

𝑘 ∕=𝑙 𝐺𝑘𝑙𝑚
(𝑡)
𝑘

with 𝑚
(𝑡)
𝑘 =

𝜆
(𝑡)
𝑘 𝑆𝐼𝑅

(𝑡)
𝑘

𝑃
(𝑡)
𝑘 𝐺𝑘𝑘

(15)

Congestion Price Update:

𝜆
(𝑡+1)
𝑙 =

⎡
⎣𝜆(𝑡)

𝑙 + 𝜅

⎛
⎝ ∑

𝑠:𝑙∈𝐿(𝑠)

𝑥(𝑡)
𝑠 − 𝑐𝑙(P̂

(𝑡), 𝜽𝑙)

⎞
⎠
⎤
⎦
+

, (16)

where 𝜅 is the step size and [𝑧]+ = max{𝑧, 0}.
Proof: Solving (11) to have (14) is straightforward. With

respect to power control, we have

∂𝐿𝑃 (P̂,𝝀)

∂𝑃𝑙

= 0 = 𝜆𝑙𝜃
𝑙
𝑙 −
∑
𝑘 ∕=𝑙

𝜆𝑘𝐺𝑘𝑙𝑒
𝑃𝑙∑

𝑗 ∕=𝑘 𝐺𝑘𝑗𝑒𝑃𝑗 + 𝑛𝑘

(17)

Transforming (17) back to P space, we obtain (15). The
update of (16) shows that we apply the projected gradient-
descent method to solve the dual problem (13), which guar-
antees the convergence of dual variable with an appropriate
choice of stepsize 𝜅 [1].
Finally, we comment on the distributed nature of these up-
dates. The result (14) is the well-known congestion control
solution where we can reuse existing distributed TCP algo-
rithms (i.e. TCP Vegas) [3]. Link power update can also
be implemented in a distributed fashion through message
passing similar to the algorithm in [2]: each receiver of link 𝑘
broadcasts its control message 𝑚𝑘 (which is a real number and
assumed to be heard by others), then each transmitter of link
𝑙 receives them, estimate 𝐺𝑘𝑙 through training sequence and
update its power as (15). The congestion price update (16)
also only needs local information: ingress rate and received
signal measurement.

C. Successive Convex Approximations: Algorithm and Opti-
mality

We continue presenting an algorithm that can achieve
the globally optimal solutions of nonconvex problem (3) by
solving successively the approximated problem (10).
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Fig. 1: Network topology.

Algorithm 1: A Novel Successive Convex Approximations
1) Initialize (x,P) = 0, 𝜏 = 1
2) Form the 𝜏 -th approximated convex problem (10) of the

original problem (3) by updating 𝜽𝑙(𝜏), ∀𝑙 with (6).
3) Solve the 𝜏 -th approximated convex problem (10) for

optimal solution (x∗(𝜏),P∗(𝜏)) as in section III-B.
4) Increment 𝜏 and go to step 2 until convergence.

Theorem 1: The series of approximations of Algorithm 1
converge to the stationary points satisfying the Karush-Kuhn-
Tucker (KKT) conditions of the original problem (3).

Proof: Letting ℎ(x,P) =
∑

𝑠:𝑙∈𝐿(𝑠) 𝑥𝑠

𝑐𝑙(P) and ℎ̂(x,P) =
∑

𝑠:𝑙∈𝐿(𝑠) 𝑥𝑠

𝑐𝑙(P) , we need to prove that this series of approxima-
tions satisfies the following properties according to [4]

1) ℎ(x,P) ≤ ℎ̂(x,P)
2) ℎ(xo,Po) = ℎ̂(xo,Po)
3) ∇ℎ(xo,Po) = ∇ℎ̂(xo,Po), where (xo,Po) is the

optimal solution of the previous iteration.

Conditions 1) and 2) are clearly satisfied with (6) and (8). It
is straightforward to verify condition 3) by taking derivative.
Then, the globally optimal convergence of Algorithm 1 can
be proved similarly as in [5].

IV. SIMULATION RESULTS

We consider a network topology as in Fig. 1 with 4
flows and 5 nodes placed equally at a distance 𝑑 = 20
m. The baseband bandwidth 𝑊 is set to 125 kHz, and
we use 𝐾 = −1.5/ log(5BER) with BER = 10−3 for
MQAM modultion [2]. The channel gain is assumed to be iid
Rayleigh random variables with mean value ℎ(𝑑) = ℎ𝑜(

𝑑
15 )

−4

where ℎ𝑜 is a reference channel gain at a distance 15 m.
The maximum power, noise and ℎ𝑜 are selected so that
the average receive SNR at 15 m is 30 dB. The utility
function of all users is log(.). We use two criteria to evaluate
the convergence-speed performance: convergence condition of
solving step 3 (i.e. inner convergence) and convergence at
step 4 (i.e. outer convergence) of Algorithm 1 represented by
max𝑙∈ℒ ∣𝑃 (𝑡)

𝑙 −𝑃
(𝑡−1)
𝑙 ∣ < 𝜖 and max𝑙∈ℒ ∣𝑃 ∗(𝜏)

𝑙 −𝑃
∗(𝜏−1)
𝑙 ∣ < 𝜖

respectively, where 𝜖 is a small number. Table I shows the
average number of iterations over 100 realizations with various
values of 𝜖. We see that our scheme converge faster than
Alg. B (i.e. log successive approximation), especially with
inner convergence. For example, the proposal converges 3
times faster with 𝜖 = 10−4. Fig. 2a shows a realization
of utility convergence with 𝜖 = 10−6. Even though Alg. B
and our method obtain the same convergence value which
is a bit lower than the optimal one of Alg. A (convex) [5]

TABLE I: Convergence Speed Comparison

𝜖
proposal log successive convex

Inner Convg. Outer Convg. Inner Convg. Outer Convg.

10−4 42.97 9.28 142.08 10.55

10−5 78.45 11.94 187.97 12.88

10−6 138.97 14.26 221.01 16.44
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Fig. 2: Convergence of the algorithm: (a) aggregate utility
comparison; (b) source rates (proposal); (c) link powers (pro-
posal).

due to the approximated nature, the relative error is small,
only 0.7% approximately. Corresponding flow rate and power
convergence of our method are shown in Figs. 2b and 2c.

V. CONCLUSION

We propose an algorithm using successive approximations
method to transform the original nonconvex problem of JCRP
problem into convex problem, then the global optimal solution
can converge distributively with message passing. Simulation
results show that our method can outperform previous work.
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