
1

Resource Allocation for Virtualized Wireless
Networks with Backhaul Constraints

Tuan LeAnh, Nguyen H. Tran, Duy Trong Ngo, and ∗Choong Seon Hong

Abstract—In this letter, we study resource allocation for
wireless virtualized networks considering both the backhaul
capacity of the infrastructure provider (InP) and the users’
quality-of-service (QoS) requirements. We focus on the profit
gained by a mobile virtual network operator (MVNO) which is
a middleman who buys physical resource from the InP, bundling
them into virtual resources called slides before selling off the
service providers. The objective of the MVNO is to maximize
its profit while guaranteeing the backhaul constraint and users’
QoS by jointly allocating the slices and the uplink transmit power
to the users. To solve the formulated mixed integer non-convex
problem, we propose a distributed solution framework based
on Lagrangian relaxation to a find suboptimal decision about
slice and transmit power allocations. We further propose a low-
complexity solution based on the concept of a matching game that
does not require any global information. Numerical results are
provided to evaluate the performance of the proposed schemes.

Index Terms—Matching theory, optimization theory, resource
allocation, virtualized wireless networks.

I. INTRODUCTION

The wireless network virtualization has recently been con-
sidered as a promising solution to increase the spectrum
and infrastructure efficiency [1]. Using virtualization, the
same infrastructure can be shared for differentiated services.
Moreover, it provides easier migration to newer technologies
while supporting legacy technologies by isolating part of the
network.

The design of an efficient virtualized resource allocation
plays an important role in the virtualized cellular network
deployment [2]–[4]. However, the works in [2] and [3] ignore
backhaul link constraints that should be carefully studied for
dense small-cell deployment scenarios with possible bottle-
neck in various backhaul solutions, e.g., xDSL, non-line-of-
sight (NLOS) microwave, and wireless mesh networks [5]. Un-
like [2] and [3], the study of [4] incorporates a business model
for the profit of MVNOs. In this model, the MVNOs rent the
network resources from the wireless physical infrastructure
providers (InPs) to create virtual resources. In turn, the service
providers (SPs) rent virtualized resources from MVNOs to
provide specific services to the end users. However, it is noted

This research was supported by the MSIP(Ministry of Science, ICT and
Future Planning), Korea, under the ITRC(Information Technology Research
Center) support program (IITP-2015-(H8501-15-1015) supervised by the
IITP(Institute for Information & communications Technology Promotion).
*Dr. CS Hong is the corresponding author.
Tuan LeAnh, N. H. Tran, and C. S. Hong are with the Department of
Computer Science and Engineering, Kyung Hee University, Korea (email:
{latuan, nguyenth, cshong}@khu.ac.kr
D. T. Ngo is with the School of Electrical Engineering and Computer Science,
The University of Newcastle, Callaghan, N.S.W. 2308, Australia (e-mail:
duy.ngo@newcastle.edu.au).

that works in [2]–[4] do not study virtual resource allocation
for uplink transmissions, which enables user equipments to
use power more efficiently to meet their QoS requirements
for the given scheduled radio resources. Besides, it should pay
more attention to adapt the inevitable uplink traffic explosion
in future mobile networks [6].

To fill the gap in the existing literature, we study the
virtual resource allocation in an uplink virtualized cellular
network. The resource allocation is formulated as an NP-hard
optimization problem that jointly allocates power and slices
in a business model. The design objective is to maximize the
MVNO profit while guaranteeing the users’ QoS requirements
and the InP’s backhaul constraints. Here, the chunk-based
radio resource allocation approach (subcarrier aggregation) is
used to isolate the slices for uplink transmissions in an or-
thogonal frequency division multiple access (OFDMA)-based
system [7], [8]. The considered joint slice and power allocation
complicate any optimization-based design due several coupled
constraints: i) slice isolation, ii) backhaul limitation, and iii)
chunk allocation for heterogeneous users’ QoS. Our research
contributions are summarized as follows:
• We propose a slice isolation approach for the uplink of

a virtualized cellular network in which the virtualized
resources or slices are isolated by base stations and
chunk-based radio resources owned by different InPs.
This isolation ensures that each slice is uniquely deter-
mined and that the customization in one slice will not
interfere with other slices.

• We propose a distributed algorithm based on Lagrangian
relaxation to find suboptimal decision on slice and trans-
mit power allocations. The problem is solved in two
different phases of power allocation and slide allocation
through updating the sequence of primal and dual vari-
ables. The optimal power is derived from Karush-Kuhn-
Tucker (KKT) conditions, whereas the Hungarian method
is applied to solve the slice allocation in a centralized
manner.

• To circumvent the requirement of global information,
we further propose a distributed algorithm based on the
concept of the matching game. This algorithm is shown
to converge to a suboptimal solution.

• Numerical results show that our proposed approaches
require a small number of iterations to converge.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an OFDMA-based virtualized cellular network
for uplink transmissions as shown in Fig. 1. The MVNO rents
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Fig. 1: Virtualized cellular network hierarchical model.

network resources from a set of B = {1, 2, ..., B} InPs. For
simplicity, we focus on a small area overlapped by multiple
InPs, in which each InP provides infrastructure services includ-
ing one small-cell base station (SBS), chunk-based wireless
resources, and a wireless backhaul link underlay an InP’s
macro-cell base station (MBS). The MVNO then provides
virtual resource services to a set of I = {1, 2, ..., I} SPs. Each
SP i ∈ I has a set U i = {1, 2, ..., Ui} subscribed users. Let U
be the set of all users of all SPs. The radio resources owned
by InP b consisting of a set of Lb = {1, 2, ..., Lb} subcarriers
are divided into Cb = {1, 2, ..., Cb} chunks, each of which is
aggregated by Lb,c = {1, 2, ..., Lb/Cb} subcarriers. Each of
these narrowband orthogonal subcarriers has a bandwidth of
W . Additionally, we assume there is no interference among
the small-cells from the same InP and among different InPs.
Virtualized resource. The infrastructure services are isolated
by a set of S slices. Each slice is uniquely determined by a pair
of base station and chunk. We denote α = [αub,c]|U|×(|Cb|×B)

as the slice allocation matrix. Here, αub,c is a binary indicator
variable with αub,c = 1 if user u is allocated to slice {b, c}
(b ∈ B, c ∈ Cb), and αub,c = 0 otherwise.
B. Problem Formulation

Slice-based data transmission rate. When user u of the
SP i transmits data with the slice-based allocation scheduled
by the MVNO, its data rate is given by

Riu(α,P ) =
∑
b∈B

∑
c∈Cb

αub,cr
u
b,c(P

u
b,c), (1)

where rub,c(P
u
b,c) =

∑
l∈Lb,c

W log2(1 + γu,lb,cP
u,l
b,c ) is the

chunk-based data rate of user u associated to SBS b and
chunk c; W is the bandwidth of each subcarrier l ∈ Lb,∀b;
γu,lb,c =

gu,l
b,c

σ2
b

in which the additional interference from macro-

cell network is absorbed into the background noise σ2
b ; gu,lb,c

represents the instantaneous channel gain on subcarrier l of
chunk c from user u to the SBS b; P u

b,c = [Pu,lb,c ]1×|Lb,c|
is the transmit power vector on all sub-carriers of chunk c;
P = [P u

b,c]|U|×(|Cb|×B) is the transmit power matrix of users
on all slices of all subscribed users.

User’s QoS demand. In order to guarantee the minimum
rate requirement Riu,min for user u subscribed to the specific
service of the SP i, the following constraint is imposed:

Riu(α,P ) ≥ Riu,min, ∀u ∈ U ,∀i ∈ I. (2)

Backhaul link constraint. In order to avoid congestion
at the capacity-limited backhaul links of InPs’ SBSs, the

aggregated data rate aggregation from all the users needs to
satisfy the following constraint:∑

i∈I

∑
u∈Ui:αu

b,c=1

Riu(α,P ) ≤ Zb,bh, ∀b ∈ B, ∀c ∈ Cb, (3)

where Zb,bh ≥ 0 is a predefined backhaul capacity of SBS b.
Network utility function. We consider the following net-

work utility of the MVNO achieved from allocating the slice
and transmit power to SPs’ users:

(4)UMVNO(α,P ) = U rev(α,P )− U cost(α,P ),

where U rev(α,P ) =
∑
i∈I
∑
u∈Ui ϕ

sp
i R

i
u(α,P )

is the MVNO network revenue resulting from
providing virtual resources to SPs; U cost(α,P ) =∑
b∈B

∑
c∈Cb(ϕbh

b α
u
b,cr

u
b,c(P

u
b,c) + ϕslice

b,c α
u
b,c) is total cost

incurred as the MVNO leases physical resource from the
InPs; ϕspi is the payment (in units/Mbps) of each SP i to the
MVNO; ϕbh

b is the unit price (in units/Mbps) of the backhaul
set by InP b for SBS b; ϕslice

b,c is the unit price of the slice set
by InP b for the chunk c of the SBS b.

The design problem is mathematically formulated as fol-
lows:
(OP): max.

(α,P )
UMVNO(α,P ) (5)

s.t. (2), (3),∑
b∈B

∑
c∈Cb

αub,c
∑
l∈Lc

Pu,lb,c ≤ P̄u, ∀u ∈ U , (6)

Pu,lb,c ≥ 0, ∀b ∈ B,∀c ∈ Cb,∀u ∈ U , (7)

αub,c ∈ Πα, ∀b ∈ B,∀c ∈ Cb,∀u ∈ U , (8)

where the total amount of transmit power (P̄u) of user is
constrained by (6); Πα is the following non-convex set:∑

u∈U
αu
b,c ≤ 1, ∀c ∈ Cb, ∀b ∈ B, (9)∑

b∈B

∑
c∈Cb

αu
b,c ≤ 1, ∀u ∈ U , (10)∑

u∈U

∑
c∈Cb

αu
b,c ≤ 1, ∀b ∈ B, (11)∑

u∈U

∑
b∈B

αu
b,c ≤ 1, ∀c ∈ Cb, (12)

αu
b,c = {0, 1} , ∀u ∈ U , ∀b ∈ B, ∀c ∈ Cb. (13)

Here, constraint (9) implies that each slice is allocated to
at most one user. Constraint (10) indicates that each user is
allocated at most one slice (i.e., at most one chunk and one
SBS). Constraints (11) and (12) represent the slice isolation,
which is uniquely determined in the MVNO.

The problem (OP) is a mixed integer non-convex optimiza-
tion problem, which is computationally intractable. In next
section, a suboptimal solution of the problem (OP) is proposed
using the Lagrangian relaxation.

III. PROPOSED JOINT SLICE AND POWER ALLOCATION

The partial Lagrangian of problem (OP) is obtained by
augmenting its objective function with a weighted sum of



constraints (2), (3), (6) as follow:

L(α,P ,λ,β) = UMVNO(α,P )+
∑
i∈I

∑
u∈Ui

λu(Ri
u(α,P )−Ri

u,min)

−
∑
b∈B

βb

(∑
i∈I

∑
u∈Ui

Ri
u(α,P )− Zb,bh

)

−
∑
i∈I

∑
u∈Ui

µu

(∑
b∈B

∑
c∈Cb

αu
b,c

∑
l∈Lc

Pu,l
b,c − P̄u

)
,

(14)

where λ = [λu]1×(|U|), β = [βb]1×B and µ = [µu]1×(|U|) are
Lagrangian nonnegative multipliers associated with constraints
(2), (3) and (6), respectively.

Then, the Lagrangian dual function of the dual problem
for the problem (OP) is

(D)
max
(α,P )

∑
i∈I

∑
u∈Ui

∑
b∈B

∑
c∈Cb

αub,c

[
Ωub,c(P

u
b,c)− ϕslice

b,c

]
(15)

s.t. (7), (8),

where Ωub,c(P
u
b,c) = (ϕsp

i − ϕbh
b + λu − βb)r

u
b,c(P

u
b,c) −

µu
∑
l∈Lb,c

Pu,lb,c .

Power control (PA) phase: Regardless of slice allocation
α and Lagrangian multiplier values, the optimal power can be
determined based on the KKT condition for optimality [9] by
taking the first derivative of Ωub,c(P

u
b,c) with respect to Pu,lb,c

as:

Pu,l∗b,c =

[
ϕsp
i − ϕbh

b + λu − βb
(ln 2/W )µu

− 1

γu,lb,c

]+
, (16)

where (x)+ = max(x, 0).
Slice allocation (SA) phase: Given the power allocation in

(16), problem (D) reduces to a maximum weighted matching
problem as:

(D-1)
max
(α,P )

∑
i∈I

∑
u∈Ui

∑
b∈B

∑
c∈Cb

αub,c

[
Ωub,c(P

u∗
b,c )− ϕslice

b,c

]
(17)

s.t. (9), (10), (13).

Here, an optimal slice allocation can be obtained using
the Hungarian algorithm [10] in which each slice {b, c} is
weighted by [Ωub,c(P

u∗
b,c )− ϕslice

b,c ] for user u.
In Algorithm 1, we propose a distributed algorithm for

the JSPA problem, which is referred to as the JSPA-HSA
algorithm. Given the allocations α and P , the optimal value
of Lagrangian multipliers can be obtained by the projected
gradient-descent method [9] according to (18), (19) and (20)
with positive step sizes s1(t), s2(t) and s3(t). The convergence
of the JSPA-HSA algorithm can be proved using the gradient-
based standard technique [9]. An optimal solution in the SA
phase is found by the Hungarian method with a computation
complexity of O(|U|×|S|)3. Moreover, the MVNO needs
global information about Ωub,c(P

u
b,c) on all the slices from the

users via dedicated reliable feedback channels [1]. Due to the
high complexity of this algorithm, we next propose a low-
complexity distributed algorithm in the SA phase.

Algorithm 1 JSPA-HSA: JSPA with Hungarian-based Slice
Allocation.

Initialization: I, B, Cb, Ui, P (0), λ(0), µ(0), and β(0).
Repeat:
Power allocation phase:

*At the subscribed user u:
1: Update λu as:

λu(t+ 1) = [λu(t)− s1(t)(Ri
u(α,P )−Rmin

u )]+; (18)
2: Update µu as:

µu(t+ 1) =

[
µu(t)− s2(t)

(∑
b∈B

∑
c∈Cb

αu
b,c

∑
l∈Lc

Pu,l
b,c − P̄u

)]+
;

(19)3: Update transmit power Pu,l
b,c (t+ 1) by (16);

*At the SBS b:
4: Update congested backhaul link price βb(t+ 1):

βb(t+1) =

[
βb(t)+s3(t)

(∑
i∈I

∑
u∈Ui

Ri
u(α,P )−Zb,bh

)]+
;

(20)Slice allocation phase:
*At the MVNO:

5: Update αu
b,c(t+ 1) using the Hungarian algorithm to maximize (17).

Until |λu(t+ 1)−λu(t)|≤ ε1, |µu(t+ 1)−µu(t)|≤ ε2, and |βb(t+ 1)−
βb(t)|≤ ε3 are simultaneously satisfied.

IV. MATCHING-BASED LOW-COMPLEXITY ALGORITHM

Herein, we present a low-complexity solution for the prob-
lem (OP) in which the SA phase is formed as a two-side
matching game [11] including subscribed users and slices to
maximize objective function (17).

We consider a two-side matching game (U ,S,�U ,�S ) for
the slice allocation. Here, �U= {�u}u∈U and �S= {�b,c
}{b,c}∈S denote the preference relations of the users and slices,
respectively. The two-side matching game is defined as a
function µ: U 7→ S such that:
(i) u = µ({b, c})↔ {b, c} = µ(u), ∀u ∈ U , {b, c} ∈ S;
(ii) |µ({b, c})|≤ 1 and |µ(u)|≤ 1, u ∈ U , {b, c} ∈ S.

In the matching µ, user u prefers slice {b, c} to {b, c}′ is de-
noted by {b, c} �u {b, c}′ ({b, c}, {b, c}′ ∈ S). Additionally,
slice {b, c} prefers user u to u′ is represented by u �{b,c} u′
(u, u′ ∈ U). A pair (u, {b, c}) is a blocking pair for µ if there
exists {b, c} �u {b, c}′ or u �{b,c} u′, ∀u, b, c, i.

In the matching µ, utility functions φu({b, c}) and φ{b,c}(u)
form the preference relations �u and �{b,c} of the users and
the MVNO, respectively. In the proposed two-side matching
game, the utilities of user u for different available slices are
estimated based on the utility value φu({b, c}) = Ωub,c(P

u
b,c).

Additionally, user u always seeks to maximize its utility
value, which means that it will bid the slice {b, c}∗ :=
arg max{b,c}∈S Ωub,c(P

u
b,c) in its preference list. In response

to the request from the users for occupying certain slices, the
MVNO wishes to maximize a utility function on each slice
defined as follows:

φu(k) = Ωub,c(P
u
b,c)− ϕslice

b,c . (21)

To maximize the objective function (17), the distributed
slice allocation strategy is presented in Algorithm 2, which is
referred to as the MSA algorithm. The MSA algorithm operates
based on the conventional deferred acceptance algorithms
[11]. It always converges to the stable matching µ∗ if no
blocking pairs exits at the both proposal (users) and acceptance
(slices) sides. Additionally, the computation complexity of



Algorithm 2 MSA: Matching-based Slice Allocation.
1: while

∑
∀u,{b,c} bu→{b,c} 6= 0 or convergence not achieved do

2: At the subscribed users:
3: Send a bid for the slice {b, c}∗ = arg max

{b,c}∈�u

φu({b, c}).
4: At the MVNO:
5: Construct �{b,c} based on (21) .
6: Update {b, c}∗ = µ({b, c})|u∗ = arg max

u∈�{b,c}
φ{b,c}(u)}.

7: Update the rejected user lists on the slices and the preference �u.
8: end while

this algorithm can be determined with an upper bound of
O(|U|2(|S|−1)). The processes of acceptance and rejection in
the MSA algorithm capture the value φ{b,c}(u) on each slice
{b, c}. This execution leads to an increase in the objective
value of (17). Hence, the MSA algorithm converges to a
maximal value of problem (D-1). However, since the MSA
algorithm execution is stopped at the stable matching µ∗, only
a suboptimal solution is achieved.

From above analysis, we now develop a low-complexity
distributed algorithm to solve problem (OP). Referred to
as JSPA-MSA, this algorithm is formed by substituting the
Hungarian method by the MSA algorithm in Step 5 of
the JSPA-HSA algorithm. In this algorithm, the slice and
power allocations are assumed to be performed in different
timescales. In the SA phase, the MVNO need not share the
cost information of the slices to the users, whereas users only
share the slice information with the most preferred slice in
its preference list to the MVNO. The convergence of the
JSPA-MSA algorithm can be proved using a gradient-based
standard technique [9]. The duality gap is nonzero because
the low-complexity algorithm MSA is suboptimal.

V. NUMERICAL RESULTS

We consider B = 3 InPs each having an SBS with a
coverage radius of 100 m and signal bandwidth of 3 MHz.
Each SBS contains 10 chunks and each chunk contains 12
subcarriers. The bandwidth of each subcarrier is W = 15kHz.
The MVNO rents InPs’ network resources to serve two SPs,
each of which has 10 users. The SP i has the minimum target
rate of 200 × i kbps (i = 1, 2). The small-scale channel
gains are assumed to be independent and identically distributed
Rayleigh random variables with unit mean. The large-scale
path loss in dB for distance d (between a user and an SBS)
is assumed to be Ld = 38.46 + 20 log10(d). The noise power
is set to -174 dBm/Hz. Each user u has Pmax

u = 100 mW.
We set ϕsp

1 = 2.5 and ϕsp
2 = 3.5units/ Mbps for SPs 1 and

2, respectively. The backhaul prices for InPs 1, 2 and 3 are
0.2, 0.4 and 0.6 units/Mbps, respectively. The slices price of
InPs 1, 2, and 3 are 0.1, 0.2, and 0.3 units/slice, respectively.
Moreover, we set the error tolerance as ε = 10−3 for all
concerned algorithms.

Fig. 2a show that two proposed algorithms converge in a
few iterations, whereas backhaul links are protected by the
JSPA-MSA scheme as shown in Fig. 2b. In Fig. 2a, the
JSPA-MSA scheme approaches the JSPA-HSA scheme at a
gap of 3.98%.

Fig. 3a compares the profits attained by the MVNO with
the proposed algorithms where we also include the base-
line algorithm Max-Rate. Similar to the JSPA-HSA, this
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Max-Rate algorithm allocates the virtual resources without
considering the business model as in [2] and [3]. However,
this benchmark algorithm only focuses on maximizing the
sum rate

∑
i∈I
∑
u∈Ui Riu(α,P ) in problem (OP). As seen,

our proposed algorithms outperform the Max-Rate solution.
The gain is observed for the JSPA-MSA scheme with an
improvement of up to 9.8% over the baseline, whereas 4.1%
over the JSPA-HSA scheme. The gain is slightly less for
the JSPA-HSA scheme at the benefit of carrying out the
computation in a distributed fashion.

In Fig. 3b, we show the network utility versus the number
of SPs’ users for different schemes with backhaul rate of 10
Mbps. The number of subscribed users |U| increases from 4 to
20 users, and each SP has |U|/2 users. As the number of users
increases, the network utilities of all schemes are improved
since data traffic grows. Moreover, the proposed schemes
outperform the Max-Rate solution in terms of network utility.
The results of the low-complexity JSPA-MSA scheme follow
those of the JSPA-HSA counterpart.

VI. CONCLUSIONS

In this letter, we have proposed efficient virtual resource
allocations in the uplink of a virtualized cellular network. A
mixed integer nonconvex optimization problem is formulated
considering the backhaul constraint. An algorithm based on
Lagrangian relaxation has been proposed to solve the for-
mulated problem. Additionally, a low-complexity distributed
algorithm based on the concept of the matching game has
been developed to reduce computation complexity. Numerical
results have confirmed that the devised algorithms quickly con-
verge and guarantee higher profits for the MVNO compared
to those of the existing designs.
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